

Evaluating a Service-Oriented
Architecture

Phil Bianco, Software Engineering Institute
Rick Kotermanski, Summa Technologies
Paulo Merson, Software Engineering Institute

September 2007

TECHNICAL REPORT
CMU/SEI-2007-TR-015
ESC-TR-2007-015

Software Architecture Technology Initiative
Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2007 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-
nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and
derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Acknowledgements vii

Abstract ix

1 Introduction 1
1.1 Audience for This Report 2
1.2 Structure of This Report 2

2 What Is Service-Oriented Architecture? 3
2.1 SOA and Web Services 4
2.2 Drivers for SOA 4

3 Stakeholders, Quality Attributes, and Architecture Representation for SOA 7
3.1 Stakeholders 7
3.2 Quality Attribute Requirements 9
3.3 Architecture Description of an SOA 10

4 SOA Architectural Approaches 13
4.1 SOA Communication Approaches 13

4.1.1 SOAP-Based Web Services 13
4.1.2 REST 17
4.1.3 Messaging Solutions 19

4.2 Integration Approach – Direct Point-to-Point Versus ESB 20
4.3 Business Process Execution Language (BPEL) 23
4.4 Static Versus Dynamic Web Services 24
4.5 Emerging SOA-Focused Technologies 26

5 SOA Design Questions That Affect Quality Attributes 27
5.1 What Is Known About The Target Platform? 27

5.1.1 Quality Attribute Discussion 27
5.1.2 Sample Evaluation Questions 28

5.2 Synchronous or Asynchronous Services? 29
5.2.1 Quality Attribute Discussion 29
5.2.2 Sample Evaluation Questions 30

5.3 Coarse- or Fine-Grained Services? 30
5.3.1 Quality Attribute Discussion 31
5.3.2 Sample Evaluation Questions 31

5.4 What Are the Strategies For Exception Handling and Fault Recovery? 32
5.4.1 Quality Attribute Discussion 33
5.4.2 Sample Evaluation Questions 33

5.5 HTTPS or Message-Level Security? 34
5.5.1 Quality Attribute Discussion 35
5.5.2 Sample Evaluation Questions 35

5.6 How is Service Authentication Managed? 36
5.6.1 Quality Attribute Discussion 36
5.6.2 Sample Evaluation Questions 36

 SOFTWARE ENGINEERING INSTITUTE | i

5.7 How is Service Access Authorization Performed? 37
5.7.1 Quality Attribute Discussion 38
5.7.2 Sample Evaluation Questions 38

5.8 Is XML Optimization Being Used? 38
5.8.1 Quality Attribute Discussion 38
5.8.2 Sample Evaluation Questions 38

5.9 Is a Service Registry Being Used? 39
5.9.1 Quality Attribute Discussion 40
5.9.2 Sample Evaluation Questions 40

5.10 How Are Legacy Systems Integrated? 41
5.10.1 Quality Attribute Discussion 41
5.10.2 Sample Evaluation Questions 41

5.11 Is BPEL Used For Service Orchestration? 42
5.11.1 Quality Attribute Discussion 42
5.11.2 Sample Evaluation Questions 43

5.12 What Is the Approach for Service Versioning? 44
5.12.1 Quality Attribute Discussion 44
5.12.2 Sample Evaluation Questions 44

6 SOA Architecture Evaluation Example 47
6.1 Architecture Evaluation Using The ATAM 47
6.2 Sample Application 49

6.2.1 Functionality 49
6.2.2 Architecture Description 50
6.2.3 Quality Attribute Scenarios 53

6.3 Architectural Approaches 56
6.4 Architectural Analysis 56

7 Conclusion 61

8 Feedback 63

Appendix A Sample SOA General Quality Attribute Scenarios 65

Appendix B Glossary of Technical Terms and Acronyms 67

Appendix C Acronym List 71

References 75

ii | CMU/SEI-2007-TR-015

List of Figures

Figure 1: SOA and SOA Technologies 4

Figure 2: RPC-Encoded Interaction 14

Figure 3: Document-Literal Interaction 15

Figure 4: Simplified Comparison of ESB and Point-to-Point Integration Approaches 21

Figure 5: Static Binding Example 24

Figure 6: Dynamic Binding Example 25

Figure 7: Https Security (from the work of Mitchell [Mitchell 2005]) 34

Figure 8: Message-Level Security (from the work of Mitchell [Mitchell 2005]) 35

Figure 9: Basic Operations of Adventure Builder (UML Use Case Diagram) 50

Figure 10: Top-Level Runtime View of the Adventure Builder Architecture 51

Figure 11: Runtime View with Exemplar External Services 52

Figure 12: Sequence Diagram for Placing an Order 52

 SOFTWARE ENGINEERING INSTITUTE | iii

iv | CMU/SEI-2007-TR-015

List of Tables

Table 1: Comparison of RPC-Encoded and Document-LiteralApproaches 17

Table 2: WS-Reliability and WS-ReliableMessaging—Who Is Who 20

Table 3: Comparison of Synchronous and Asynchronous Services 29

Table 4: Quality Attribute Scenarios for the Adventure Builder Application 53

Table 5: Architectural Analysis for Scenario 2 57

Table 6: Architectural Analysis for Scenario 4 58

Table 7: Architectural Analysis for Scenario 5 59

Table 8: Architectural Analysis for Scenario 9 60

 SOFTWARE ENGINEERING INSTITUTE | v

vi | CMU/SEI-2007-TR-015

Acknowledgements

We want to thank the following people for their thoughtful feedback and discussion that greatly
improved the quality of this report: Felix Bachmann, Sri Bala, Eric Hohman, Rick Kazman, Mark
Klein, Richard Koch, Grace Lewis, Ed Morris, Linda Northrop, Scott Parker, and Soumya
Simanta.

 SOFTWARE ENGINEERING INSTITUTE | vii

viii | CMU/SEI-2007-TR-015

Abstract

The emergence of service-oriented architecture (SOA) as an approach for integrating applications
that expose services presents many new challenges to organizations resulting in significant risks
to their business. Particularly important among those risks are failures to effectively address qual-
ity attribute requirements such as performance, availability, security, and modifiability. Because
the risk and impact of SOA are distributed and pervasive across applications, it is critical to per-
form an architecture evaluation early in the software life cycle. This report contains technical in-
formation about SOA design considerations and tradeoffs that can help the architecture evaluator
to identify and mitigate risks in a timely and effective manner. The report provides an overview of
SOA, outlines key architecture approaches and their effect on quality attributes, establishes an
organized collection of design-related questions that an architecture evaluator may use to analyze
the ability of the architecture to meet quality requirements, and provides a brief sample evalua-
tion.

 SOFTWARE ENGINEERING INSTITUTE | ix

x | CMU/SEI-2007-TR-015

1 Introduction

Service-oriented architecture (SOA) is a very popular architecture paradigm for designing and
developing distributed systems. SOA solutions have been created to satisfy business goals that
include easy and flexible integration with legacy systems, streamlined business processes, reduced
costs, innovative service to customers, and agile adaptation and reaction to opportunities and
competitive threats.

One of the most valuable software engineering principles is to introduce inspection points into the
software life cycle. Software architecture evaluation is a particularly important inspection point,
because architecture is the bridge between business goals and the software system. Choosing and
designing an architecture that satisfies functional as well as quality attribute requirements (e.g.,
availability, security, and performance) is vital to the success of the system. Architectural deci-
sions have a deep and broad effect on downstream development stages. Early evaluation of the
requirements and the architecture saves time and money, because fixing defects once the code is
fielded is at least three times more costly [McConnell 2001].

The goal of this report is to offer practical information to assist the architecture evaluation of a
system that uses the SOA approach. We provide guidance on important aspects of the architecture
evaluation activity, such as enlisting stakeholders, describing the architecture, identifying archi-
tectural approaches, and probing the architects with questions about the architecture. The system-
specific business goals and requirements dictate how the architecture will be probed by the
evaluation team and determine the types of questions that should be asked.

This report does not introduce a new method for architecture evaluation. The Architecture Trade-
off Analysis Method® (ATAM®)—developed by the Carnegie Mellon® Software Engineering In-
stitute (SEI)—is used as the basis for defining the activities and information that are important for
an architecture evaluation of a system that uses an SOA approach. While we use the ATAM, we
believe the information provided will be useful regardless of the evaluation method employed.

In SOA solutions there are service providers—elements offering services to be used by others—
and service users—elements that invoke services provided by others. These categories are not mu-
tually exclusive. A service provider may use other services, and a service user may provide a ser-
vice interface. This report is targeted at the evaluation of the software architecture at the level
where it describes the integration of these elements through services. This evaluation at the ser-
vice integration level does not replace the need to evaluate the internal design of each service user
and provider.

In this report, we do not address the evaluation of business strategy alignment, risk management,
cost benefit analysis of technology adoption, product and vendor selection, or skill development.

® Architecture Tradeoff Analysis Method, ATAM, and Carnegie Mellon are registered in the U.S. Patent and Trademark

Office by Carnegie Mellon University.

 SOFTWARE ENGINEERING INSTITUTE | 1

We focus on the technical considerations of evaluating the architecture of a specific system that
uses the SOA approach.

1.1 AUDIENCE FOR THIS REPORT

The report is aimed at software architects using the SOA approach and anyone concerned with
evaluating SOA solutions. The technical discussion presumes some familiarity with Web services
technology and distributed software development.

The report should be particularly useful to an architecture evaluation team evaluating an SOA-
based architecture using the ATAM or a similar method. It will help them define an appropriate
group of stakeholders, formulate important quality attribute requirements, identify architectural
approaches used in the solution, understand how those approaches affect system qualities, and
probe the architecture about SOA-specific design concerns. The report can also guide SOA archi-
tectural choices made by software architects in the planning and designing phases.

1.2 STRUCTURE OF THIS REPORT

Section 2 of the report defines SOA and Web services from the point of view of software devel-
opers. Section 3 discusses key aspects of any architecture evaluation: selecting stakeholders to
participate in the evaluation, specifying quality attribute requirements that are important in SOA,
and describing the architecture of an SOA-based system. Sections 4 and 5 are the core of the re-
port. Section 4 describes architectural approaches for SOA-based systems and their tradeoffs. Sec-
tion 5 provides a list of design questions that influence quality attributes and can be used to probe
the architecture during the evaluation. This section also contains references to general quality at-
tribute scenarios described in Appendix A. Section 6 is a sample application of the guidelines in
Sections 3, 4, and 5. Section 7 has our concluding remarks.

The report contains many technical terms and acronyms used by the SOA community. We pro-
vide a glossary of technical terms and acronyms in Appendix B to avoid extensive explanations in
the report text. We provide a more extensive acronym list in Appendix C that includes both tech-
nical and SEI-specific acronyms used in the report.

2 | CMU/SEI-2007-TR-015

2 What Is Service-Oriented Architecture?

There are many definitions of SOA but none are universally accepted. What is central to all, how-
ever, is the notion of service. For an SOA, a service

• is self-contained. The service is highly modular and can be independently deployed.

• is a distributed component.1 The service is available over the network and accessible through
a name or locator other than the absolute network address.

• has a published interface. Users of the service only need to see the interface and can be
oblivious to implementation details.

• stresses interoperability. Service users and providers can use different implementation lan-
guages and platforms.

• is discoverable. A special directory service allows the service to be registered, so users can
look it up.

• is dynamically bound. A service user does not need to have the service implementation avail-
able at build time; the service is located and bound at runtime.

These characteristics describe an ideal service. In reality, services implemented in service-
oriented systems lack or relax some of these characteristics, such as being discoverable and dy-
namically bound.

We define SOA as an architectural style where systems consist of service users and service pro-
viders. An architectural style defines a vocabulary of component and connector types, and con-
straints on how they can be combined [Shaw 1996]. For SOA, the basic component types are ser-
vice user and service provider. Auxiliary component types, such as the enterprise service bus
(ESB) and the directory of services, can be used. SOA connector types include synchronous and
asynchronous calls using SOAP, bare http, and messaging infrastructure. Many properties can be
assigned to these component and connector types, but they are usually specific to each implemen-
tation technology. For example, as we will see in Section 5.1, the property “style” for messages in
the Web services technology can be either “RPC” or “document.” Some of the constraints that
apply to the SOA architectural style are

• Service users send requests to service providers.

• A service provider can also be a service user.

• A service user can dynamically discover service providers in a directory of services.

• An ESB can mediate the interaction between service users and service providers.

1 In practice a service implementation may consist of a collection of components. They work together to deliver the function-

ality the service represents.

 SOFTWARE ENGINEERING INSTITUTE | 3

2.1 SOA AND WEB SERVICES

Although much has been written about SOA and Web services, there still is some confusion be-
tween these two terms among software developers. SOA is an architectural style, whereas Web
services is a technology that can be used to implement SOAs. The Web services technology con-
sists of several published standards, the most important ones being SOAP and WSDL. Other
technologies may also be considered technologies for implementing SOA, such as CORBA. Al-
though no current technologies entirely fulfill the vision and goals of SOA as defined by most
authors, they are still referred to as SOA technologies. The relationship between SOA and SOA
technologies is represented in Figure 1. Much of the technical information in this report is related
to the Web services technology, because it is commonly used in today’s SOA implementations.

Figure 1: SOA and SOA Technologies

2.2 DRIVERS FOR SOA

In large organizations, the following types of organizational, business, and technology changes
drive a desire to reap the benefits of SOA:

• integration with legacy systems

• corporate mergers

• realignment of responsibilities through business reorganizations

• changing business partnerships (e.g., relationships with suppliers and customers)

• modernization of obsolete systems for financial, functional, or technical reasons

• acquisition or decommission of software products

• sociopolitical forces related to or independent of the drivers cited above

4 | CMU/SEI-2007-TR-015

These forces lead to SOA because they involve significant application integration efforts. When
an integrated application changes, risky and costly modifications to other applications are fre-
quently required. As system interconnections become more pervasive and the pace of business
and process changes increases, the inability to integrate efficiently can cause the failure of a busi-
ness. SOA is seemingly ideal for these situations.

Distributed systems technologies of the past, such as CORBA, didn’t achieve broad adoption in
part, because standards were not widely endorsed by CORBA vendors. More recent SOA tech-
nologies, such as Web services, seem to be off to a better start as they begin to be widely adopted.
One possible explanation for the change in attitude is that the need to interoperate with applica-
tions outside the scope of a given organization is becoming more vital. The notion of software as
a service (SaaS) delivery is intended to allow organizations to selectively purchase, mix, match,
and change sources of services to their business advantage. The goal of the service-oriented ap-
proach is to enable the composition of new or existing services and applications in a technologi-
cally heterogeneous environment. However, many of the issues and concerns encountered and
addressed in distributed systems designs over the past 20 to 30 years also apply directly to SOA.
Significant shortcomings of integration approaches are related to the independent entropy (or
movement to disorder) of connected but separately managed applications. Since many technical
issues remain, a careful evaluation of a system’s design decisions is important to ensure that an
SOA solution can attain the benefits advertised by proponents of the SOA approach.

 SOFTWARE ENGINEERING INSTITUTE | 5

6 | CMU/SEI-2007-TR-015

3 Stakeholders, Quality Attributes, and Architecture Repre-
sentation for SOA

In any software architecture evaluation, three activities are critical to success: (1) selecting a rep-
resentative constituency of stakeholders to provide input in the evaluation; (2) specifying the qual-
ity attribute requirements that derive from business goals in a precise way; and (3) describing the
architecture in an expressive and comprehensive way. This section discusses how these activities
should be carried out when the architecture in question is SOA based.

3.1 STAKEHOLDERS

The architecture evaluation should allow participants to express concerns and see how their con-
cerns are addressed. A broader constituency of stakeholders decreases the risk of overlooking im-
portant architectural concerns. One of the challenges of eliciting quality attribute requirements
for a system is that it may not be possible to know all the stakeholders. This is especially true in
SOA-based systems that provide public services and/or search for services at runtime. Most of the
roles listed below are common to all systems; there are some roles that are unique to an SOA-
based system (these are italicized). The specific stakeholders chosen for an evaluation will depend
on the needs of the organization. At a minimum, the following stakeholders should be invited to
participate in the architecture evaluation of a system:

System Producers

• software architects. Their main responsibilities include experimenting with and deciding
between different architectural approaches, creating interface and component specifications,
and validating the architecture against the functional and quality attribute requirements. The
architects create documentation that articulates the architectural vision to other stakeholders,
documenting the risks and tradeoffs of the architecture as well as the rationales for design de-
cisions. Architects also ensure that the implementation conforms to the architecture.

• developers. Their main responsibilities include implementing the architectural elements of
the system according to the architecture specification, offering expertise during detailed de-
sign processes, and conducting experiments or creating prototypes to validate an architectural
approach.

• service usage regulators. Their main responsibilities include creating policies for service us-
age, such as specifying that services must conform to certain standards, and possibly placing
constraints on the services that can be used (e.g., specifying trusted sources for services). An-
other responsibility might be crafting service level agreements between organizations.

• testers. Their main responsibilities include planning tests of the systems, executing all
planned tests, recording the results of all planned tests, and reporting defects.

 SOFTWARE ENGINEERING INSTITUTE | 7

• integrators. Their main responsibilities are to ensure that the architecture and implementation
conform to open and widely accepted standards, and to advocate architectural approaches that
simplify service integration, upgrades, and replacements.

• maintenance developers. Their main responsibilities include modifying the software to cor-
rect defects and adapting the software when environmental changes occur (e.g., hardware or
operating system changes).

• project managers. Their main responsibilities include managing the development effort, cre-
ating the project plan, and tracking the progress of the project.

• chief information officers (CIOs). The CIO works with the architects, business analysts,
and developers to ensure that a solution will integrate well with existing systems, applica-
tions, and infrastructure.

System Consumers

• chief security officers (CSOs). The CSO works with the architects, business analysts, and
developers to ensure that all information security policies are followed.

• business managers. Their primary interest is to ensure that the application supports the or-
ganization’s business goals and that the architects understand all legal and regulatory implica-
tions.

• business analysts/customers. Their primary interests and responsibilities are to acquire and
transmit to developers the knowledge of the business domain and functional and quality at-
tribute requirements of the system.

• end users. Their main responsibilities include learning to operate the system, preparing and
entering inputs, and interpreting the output from the system. They also generate system re-
quirements.

• developers of service users. If the system offers services to external service user applications,
the architects or developers who are responsible for these external clients should also be in-
vited. These external developers may provide input on application program interface (API)
design and desired quality of service (e.g., availability).

• maintenance developers. They are responsible for general maintenance duties (described
above) with the subtle difference that they would most likely not be able to modify services
and would often be forced to modify other parts of the system. The inability to modify ser-
vices would be similar to buying off-the-shelf software.

Infrastructure Providers

• system administrators. Their responsibilities include attaining a good understanding of the
system operation for troubleshooting problems that arise during and after deployment. They
usually assume most duties associated with computer security in an organization (i.e., upkeep
of firewall and intrusion detection systems, management of access rights, and applying
patches to software and operating systems).

• network administrators. The network administrator maintains the network infrastructure
and troubleshoots problems with routers, switches, and computers on the network.

8 | CMU/SEI-2007-TR-015

• database administrators. They create and maintain databases, ensuring data integrity and
consistent performance of the database management systems.

• external developers of service providers. If the system is going to access external services,
the architects or developers who are responsible for those external services should also par-
ticipate in the architecture evaluation. They may contribute requirements for interaction with
their services, as well as knowledge of qualities and limitations of their systems.

3.2 QUALITY ATTRIBUTE REQUIREMENTS

A quality attribute is a property of a system by which some stakeholders will judge its quality.
Quality attribute requirements, such as those for performance, security, modifiability, reliability,
and usability, have a significant influence on the software architecture of a system [SEI 2007].
Quality attribute requirements can be specified using quality attribute scenarios. Appendix A pro-
vides several examples of scenarios that are common in SOA systems.

The use of a service-oriented approach positively impacts some quality attributes, while introduc-
ing challenges for others. This section summarizes the effect of SOA on different quality attrib-
utes. O’Brien and colleagues provide a more detailed analysis [O’Brien 2005].

Improved interoperability is one of the most prominent benefits of SOA. With Web services tech-
nology, for example, service users can transparently call services implemented in disparate plat-
forms using different languages. In this technology, the goal of syntactic interoperability2 is sup-
ported by two basic standards: WSDL and SOAP. There are also additional standards such as
UDDI, BPEL, and WS-Security that provide other capabilities to systems developed with Web
services technology. However, not all Web services platforms implement the same version of
these additional standards, and in practice, interoperability is not as easy to achieve as is adver-
tised.

Modifiability is the ability to make changes to a system quickly and cost-effectively. SOA pro-
motes a looser coupling between service users and providers. Services are modular and self-
contained, reducing the number of usage dependencies between service users and providers.
Therefore the cost of modifying these services is reduced. Changing the interface of a published
service is still a challenge, but SOA solves this problem through versioning mechanisms and more
flexible contracts specified in Extensible Markup Language (XML). Modifiability requirements
that involve finding and incorporating a new service are also easier in SOA.

Performance in an SOA context is usually measured by average case response times or through-
put. In most cases, SOA performance is negatively impacted because

• SOA enables distributed computing, and the need to communicate over a network in-
creases the response time.

2 Web Services provide primarily syntactic interoperability. Whether two components can interoperate also depends on

their semantic agreement about the meaning of data and operations. Throughout this report, interoperability discussions
refer primarily to syntactic interoperability.

 SOFTWARE ENGINEERING INSTITUTE | 9

• Intermediaries, such as the directory of services and proxies that perform data marshal-
ling, cause some performance overhead.

• Standard messaging formats (e.g., XML) increase the size of messages and hence the
time to process requests.

Security is also a challenge in SOA, especially when external services or public directories of ser-
vices are used. A common problem is the negative impact of vendor-specific security features on
interoperability. The WS-I organization has recently published the Basic Security Profile Version
1.0 to try to remedy this problem [WS-I 2007]. Other security design concerns are covered in Sec-
tions 5.5, 5.6, and 5.7.

Testability is the degree to which a system facilitates establishing test criteria and performing
tests. Testing a system that uses SOA is more complex. First, it is more difficult to set up and
trace the execution of a test when system elements are deployed on different machines across a
network. Second, the source code of external services is often unavailable, so test cases must be
defined based on published interfaces. If the source code were available, the tester would be able
to ensure better code coverage. Also, in Web services solutions, sometimes the error is in an XML
document (e.g., a WSDL definition), and dealing with raw XML is cumbersome. Finally, in cases
where services are discovered at runtime, it may be impossible to determine which service is be-
ing used until the service is executing. Because SOA involves distributed components in a hetero-
geneous environment and may require distributed transactions, achieving high reliability is also
challenging.

3.3 ARCHITECTURE DESCRIPTION OF AN SOA

The architecture description is required to perform an architecture evaluation. In the architecture
description, multiple views are necessary to communicate the architecture to the various stake-
holders [Clements 2002a]. Module views show the structure of units of implementation; Runtime
views (also known as Component & Connector views) show the components that have runtime
presence; Deployment views show the hardware infrastructure and deployment artifacts; and the
Data Model view shows the organization of entities in a database. There are other types of views,
and the architect should choose which views to document and which views to document in detail,
based on the stakeholders’ needs and the kinds of structures found in the system.

But which view best shows the service-oriented aspect of an architecture? In Section 2, we said
that a service is a distributed component whose implementation details can be hidden. The dis-
tributed nature of a service and the interaction between a service user and service provider are
manifested at runtime. Thus, the Runtime view best captures a service-oriented design. Using the
terminology of the Views & Beyond approach for software architecture documentation [Clements
2002a], we can say that SOA is a style of the Component & Connector view type.

SOA solutions can be very rich, comprising external services and special components, such as the
ESB. It is usually beneficial to complement the structural diagrams in Runtime views with behav-

10 | CMU/SEI-2007-TR-015

ior diagrams (e.g., UML sequence diagrams) that describe the sequence of interactions occurring
in specific transactions.

Section 6.2.2 provides a small sample architecture (including a Runtime view diagram and a se-
quence diagram) that shows the behavior of the system when a specific stimulus arrives.

Although the architecture description focuses on the structures of the system being implemented,
other types of documentation are also important. Understanding and documenting the business
process flow is very important in SOA solutions. Section 4.3 has more information about process
specification, automation, and orchestration.

 SOFTWARE ENGINEERING INSTITUTE | 11

12 | CMU/SEI-2007-TR-015

4 SOA Architectural Approaches

In an architecture evaluation, we often don’t have time to look at all the architectural elements of
the system. Architecture evaluators understand how different architectural approaches and pat-
terns affect quality attributes. Therefore, to evaluate whether a software architecture can meet the
quality attribute requirements, we can focus on the architectural approaches used in the system.
For the evaluation of an SOA system, we focus primarily on service integration and communica-
tion patterns, rather than the architectures of the underlying integrated applications.

Beyond traditional distributed systems design concerns—such as network communication, secu-
rity, transaction management, naming, and location—which architectural approaches are different
with SOA? This section describes common and emerging SOA architectural approaches that will
be factors in evaluating an SOA.

4.1 SOA COMMUNICATION APPROACHES

Each interaction between a service user and a service provider in an SOA can be implemented
differently. The implementation alternatives impact important quality attributes of the system,
such as interoperability and modifiability. In a pure Web services solution, the SOAP protocol is
used. However, the architect can also avoid SOAP and use a simpler approach, such as Represen-
tational State Transfer (REST). Another option is to use messaging systems, such as Microsoft
MSMQ and IBM Websphere MQ (previously called MQSeries). These alternatives and related
quality attribute concerns are discussed below. An SOA environment may involve a mix of these
alternatives along with legacy and proprietary communication protocols, such as IIOP, DCOM,
DCE, and SNA/LU6.2.

4.1.1 SOAP-Based Web Services

Web services is a technology commonly used to implement SOAs. Service interfaces are defined
in the WSDL language, and service users and service providers communicate using the SOAP
protocol. Two attributes in a WSDL interface, “style” and “use,” define the SOAP communication
between service users and providers. The style attribute has two possible values: “RPC” and
“document.” The use attribute refers to data encoding and has two possible values: “encoded” or
“literal.” Consequently there are four possible combinations of these two attributes. Two com-
bined options that are common in practice are RPC-encoded and document-literal. They are de-
scribed next.

RPC-Encoded SOAP

In the RPC style, the SOAP message is equivalent to an XML-based remote method call. The
name and type of each argument is part of the WSDL interface definition. The body of the SOAP
request necessarily contains an element indicating the operation name and sub-elements
corresponding to the operation arguments. The encoded attribute indicates that data is serialized

 SOFTWARE ENGINEERING INSTITUTE | 13

using a standard encoding format. This format is defined by the SOAP specifications and contains
rules to encode primitive data types, strings, and arrays. Figure 2 represents an RPC-encoded
interaction.

The RPC-encoded style was popular in the first years of the Web services technology because of
its simple programming model and the similarity between service operations and object methods.
However, it is not a good choice, because interoperability problems can arise from deficiencies in
the SOAP-encoding specifications [Ewald 2002].

Figure 2: RPC-Encoded Interaction

Document-Literal SOAP

The SOAP message body in a document-literal style request can contain arbitrary XML (the busi-
ness document). The WSDL definition does not have to specify named parameters, and the XML
content of the message body does not follow a standard structure as in the RPC style. The literal
attribute indicates that no standard encoding format is used—data in the SOAP body is formatted
and interpreted using the rules specified in XML schemas created by the service developer. The
XML schemas that define the data structure of the request and the response are the key elements
in the interface definition. Figure 3 shows a document-literal interaction.

14 | CMU/SEI-2007-TR-015

Figure 3: Document-Literal Interaction

 SOFTWARE ENGINEERING INSTITUTE | 15

Table 1 compares the RPC-encoded and document-literal approaches with respect to different
quality attributes, clarifying why document-literal is currently the most common approach for
SOAP messages. The document-literal approach is recommended by the WS-I organization. In an
architecture evaluation, the architect should be aware of the differences between these styles.
Some Web services toolkits still use RPC-encoded as the default style; therefore, it is important
that developers know how to specify the desired style when creating services.

16 | CMU/SEI-2007-TR-015

Table 1: Comparison of RPC-Encoded and Document-LiteralApproaches

Quality Attribute RPC-Encoded Document-Literal

Interoperability Is less interoperable due to in-
compatibility in SOAP encoding
across platforms

☺ Is more interoperable and recom-
mended by WS-I

 May yield worse performance due
to processing overhead required
to encode payloads

☺ Requires no encoding overhead Performance

 Requires DOM parsing ☺ Allows other parsing technologies
(e.g., SAX)

☺ In theory yields better modifiability
because service interfaces are
closer to programming language
interfaces with operations and pa-
rameters. This similarity also en-
ables the use of automatic object-
to-WSDL translation.

 Is usually harder to implement be-
cause the XML schema definitions
and the code to process and trans-
form the XML documents are usu-
ally not created automatically

Modifiability

 In practice, any change to the syn-
tax of an operation requires
changes in the service users, re-
sulting in increased coupling.

☺ Yields less coupling. There is more
flexibility to change the business
document without affecting all ser-
vice users.

4.1.2 REST

REST was proposed by Roy Fielding [Fielding 2000]. It avoids the complexity and processing
overhead of the Web services protocols by using bare http. As an example, consider a weather
forecast service that is publicly available and is provided by http://www.weather.com. One impor-
tant REST concept is a resource, which is a piece of information that has a unique identifier (e.g.,
a uniform resource identifier (URI)). For the weather service, examples of resources include

• current weather for zip code 15213

• weather forecast for tomorrow for the city of Pittsburgh

• 10-day weather forecast for zip code 15213

• temperature averages for the city of Pittsburgh in October

In this example, there are three types of resources: current weather, weather forecast, and tem-
perature averages. We can structure the URIs of the resources based on these three types. Parame-
ters can be represented by elements in the URI hierarchical path or [key]=[value] pairs. The URIs
corresponding to the resources we listed above could be

• http://www.weather.com/current/zip/15213

• http://www.weather.com/forecast/tomorrow/city/Pittsburgh

• http://www.weather.com/forecast/tenday/zip/15213

• http://www.weather.com/avg/city/Pittsburgh?month=10

 SOFTWARE ENGINEERING INSTITUTE | 17

It is no coincidence that these URIs look like what we type in a Web browser. REST relies on the
http protocol for the interaction between service users and providers. The http protocol has four
basic operations: POST, GET, PUT, and DELETE. In a REST design, the application of these
operations to resource URIs correspond to create, retrieve, update, and delete (CRUD) operations
commonly used in information systems. Thus, if the service user sends a POST request on
http://www.weather.com/current/zip/15213, it is asking the service provider to create the data for
the current weather in zip code 15213 using the data passed along with the request. A GET re-
quest on the same URI tells the service provider to retrieve the data for the current weather in zip
code 15213 and return it in the response. A PUT request indicates that the service provider should
replace the data it has with the data sent in the request. A DELETE request indicates that the ser-
vice user wants the service provider to delete the data. The http protocol also defines the status
codes that can be returned: 200 for OK, 201 for created, 401 for unauthorized, and so forth.

A unique characteristic of REST is that it prescribes a uniform interface—the service is exposed
as information resources upon which a fixed set of operations can be applied, rather than a set of
methods with different parameters. In a REST solution, for each resource we have to define a rep-
resentation. In most cases, basic XML is the format used. Also, REST services are necessarily
stateless—they don’t store the conversational state across multiple requests from the same service
user.

REST advocates claim several benefits over SOAP-based Web services :

• REST results in improved modifiability. For a service user to interact with a non-REST Web
Service, the service user has to understand the specifics of the data contract (i.e., how data is
structured) and the interface contract (i.e., what operations can be performed). Because of the
uniform interface, to invoke a REST service, the service user only has to understand the data
contract, because the interface contract is uniform for all services [Vinoski 2007].

• REST is easy to implement and yields high interoperability, since it only requires standard
http support from both the service user and provider. It doesn’t require SOAP toolkits to im-
plement the code or an application server that supports Web services .

• REST has better performance due to its ability to cache the responses (when applicable) and
to the absence of the intermediaries, message wrapping, and serialization that are required by
Web services .

Web services and REST represent different paradigms to implement SOA. One is centered on the
operations to be executed by the service provider. The other is focused on access to resources. In
the architecture evaluation of an SOA system, the evaluation team can question which approach
would be more appropriate for each service. REST is a good option for accessing static or nearly
static resources. It is also useful for portable devices with limited bandwidth, because REST mes-
sages are less verbose than SOAP messages. The Web services technology offers better support
for security, reliable messaging, and transaction management [MacVittie 2006]. As a result of
widespread adoption, plenty of knowledge on Web services is provided on the Web and in the
professional community. There is also better tool support for developing Web services, although
APIs for easy development of REST solutions are being created, such as the Java API for REST-
ful Web services [Sun 2007b]. If the application is going to provide services to multiple users and

18 | CMU/SEI-2007-TR-015

business partners, an alternative is to build both SOAP and REST interfaces for the same services
like Amazon.com and eBay do.

4.1.3 Messaging Solutions

The interaction between service users and service providers can also be based on messaging sys-
tems, such as IBM WebSphere MQ, Microsoft MSMQ, Oracle AQ, and SonicMQ. These prod-
ucts offer primarily asynchronous message exchanges between distributed applications in a point-
to-point (sender-receiver) or publish-subscribe fashion. Basically, the messaging system allows an
administrator to configure message queues. Applications can then connect to these queues to send
or receive messages, while the messaging system coordinates the sending and receiving of mes-
sages. These solutions can also be designated as event-driven architecture (EDA), in which case
the messages are events and queues are often called channels.

The main benefits of messaging solutions are

• They offer great reliability with guaranteed delivery of messages.

• They promote loose coupling between message producers and consumers, and the reuse of
message consumers.

• They are particularly useful when connecting disparate systems and legacy applications.

• Commercial implementations provide high scalability to support an increasing number of
clients by adding more instances of message consumers.

• They may be designed to work offline (i.e., disconnected from the network). Messages are
queued and stored on the sender, and when connectivity resumes, they are sent to the receiver
in the same way that a PDA synchronizes with a server.

There are three main challenges in messaging systems. The first challenge is that the asynchro-
nous programming model is more complex, particularly when the interaction is synchronous and a
callback mechanism must be used (see Section 5.2). The second challenge is the performance cost
to wrap data in message packets and to store (sometimes on disk) the messages on the sender
and/or receiver computer. The third challenge is interoperability. Proprietary messaging systems
are usually not available on all platforms. For example, Microsoft MSMQ is a Windows-only
product. Moreover, messaging systems usually rely on proprietary protocols and require third-
party bridges to interact with other messaging systems.

There are isolated solutions that use SOAP over messaging systems [Shah 2006, Kiss 2004], but
the most important ongoing efforts today to allow messaging systems to benefit from SOAP in-
teroperability are the WS-Reliability [OASIS 2004a] and WS-ReliableMessaging [OASIS 2006b]
standards. They have much more in common than the name, as indicated in Table 2. Both stan-
dards define SOAP-based reliable messaging via acknowledgments. Vendors of Web services
platforms, such as Microsoft, IBM, Sun Microsystems, and BEA, have announced support for
either or both standards. The implementations of the standards often build on an existing messag-
ing system. Both standards allow message producers and consumers implemented in different
languages and on different platforms to interoperate seamlessly using the SOAP protocol. None-
theless, the fact that there are competing specifications may itself become an obstacle to interop-

 SOFTWARE ENGINEERING INSTITUTE | 19

erability, though the industry seems to be moving towards WS-ReliableMessaging. One indicator
of this is its prescription in the recently published WS-I Reliable Secure Profile Version 1.0.

In the architecture evaluation, if both reliability and interoperability are strong requirements, the
use of products compatible with WS-ReliableMessaging is a step in the right direction.

Table 2: WS-Reliability and WS-ReliableMessaging—Who Is Who

Standard name Web Services Reliability Web Services Reliable Messaging

Abbreviated name WS-Reliability WS-ReliableMessaging

Acronyms com-
monly used

WSRM, WS-R WS-RM

Standard body OASIS OASIS

Committee name Web Services Reliable Messaging
Technical Committee

Current version and
status

OASIS published standard V1.1, No-
vember 15, 2004

Committee Draft 04, August 11, 2006

Original champions Sun Microsystems, Fujitsu, Hitachi,
NEC, Oracle, Sonic Software

BEA, IBM, Microsoft, Tibco

4.2 INTEGRATION APPROACH – DIRECT POINT-TO-POINT VERSUS ESB

The establishment of system integration patterns and strategies for an SOA system has a signifi-
cant and long-lasting impact. The two significant options for a primary integration pattern are (1)
direct point-to-point and (2) hub-and-spoke. In the direct point-to-point approach, each connection
between applications (i.e., each service user-provider interaction) is individually designed and
cooperatively implemented, deployed, and administered. Responsibility for connectivity issues
such as location, naming, security, auditing, and versioning of services is distributed among the
applications.

In the hub-and-spoke approach, the interaction between service users and providers is mediated
by brokering software. In the SOA space, this brokering software is usually called the ESB. The
more classical term is enterprise application integration (EAI) software. Each application is de-
signed to interact with the ESB, allowing it to manage the routing and transformation of messages
between applications. Figure 2 provides a simplified comparison of ESB and point-to-point inte-
gration topologies. It is common in large organizations to have a mixture of approaches that de-
pend on a variety of factors, such as application age and purpose of integration connectivity.

20 | CMU/SEI-2007-TR-015

Figure 4: Simplified Comparison of ESB and Point-to-Point Integration Approaches

The term ESB is used interchangeably to refer to an architectural pattern and a product. While
there is not an established industry standard that defines what constitutes an ESB, vendors and
implementers have tried to identify some common capabilities that are outlined below:

• ESBs provide fundamental support for Web services .

• The ESB can route messages to one or more applications. Message routing that the ESB con-
trols may be

− fixed application-to-application
− dynamic based on reading designated message content
− dynamic based on system availability
− dynamic based on load balancing
− distribution from one source to many receivers (i.e., publish-subscribe)
− consolidation of messages from multiple sources to one receiver (message aggregation)

• The ESB can transform data, including conversion of

− data format (e.g., from a legacy application-specific, fixed-field record file format to a
predefined XML schema)

− business content (e.g., a part number in an enterprise resource planning (ERP) applica-
tion to a different number in Web-based order-entry system)

− multiplicity (i.e., splitting or combining separate messages)
• The ESB functionality can be distributed across multiple servers, which are centrally man-

aged. Other hub-and-spoke solutions often mandate a single server.

 SOFTWARE ENGINEERING INSTITUTE | 21

• The ESB provides support for use of proprietary or custom adapters to connect to legacy and
commercial off-the-shelf (COTS) applications.

• ESB products can support authentication, authorization, and encryption using multiple secu-
rity standards such as WS-Security, Kerberos, and secure socket layer (SSL).

• ESB products typically provide advanced tooling (such as graphical document field mapping
and routing definitions), integrated security, administration functions, and runtime monitoring
services.

Primary architecture quality attributes that are addressed by an ESB include

• interoperability. An ESB allows connected applications with disparate technology and data
formatting requirements to interoperate as service users and providers without invasive
changes to each.

• modifiability. An ESB allows many (not all) types of changes or replacements of service pro-
viders without impacting the service users. For example, an ESB can be used to cross-
reference IDs for products between applications or match date-and-time format standards
without changing the source applications.

• extensibility. Compared to a point-to-point integration strategy, an ESB provides the ability to
more easily add services as needed to meet changing business demands.

Adding an ESB to an SOA versus the use of direct point-to-point connections presents some ar-
chitecture quality tradeoff considerations:

• Performance may be negatively impacted due to additional message hops and message trans-
formation performed by the ESB.

• The overall system complexity and initial implementation cost are increased by adding an
ESB to the architecture. Thus, adopting an ESB may not be feasible in environments with a
small number of applications and services, or in projects with a tight schedule. An organiza-
tion that adopts an ESB needs to

− Define a long-term strategy comprising policies and standards for using the ESB, such
as message format standards, connectivity and security standards, naming standards for
service endpoints, queues, database connections, message schemas, and deployment
files. These policies and standards are also important in direct point-to-point solutions,
but become critical when there is a common backbone shared by all applications.

− Establish processes to ensure that applications do not unjustifiably bypass the ESB.
− Evaluate the ESB infrastructure and supporting platform to ensure that they provide

mechanisms for transaction management, availability, logging and monitoring, error
handling, scalability, and any other mechanism needed to meet the quality attribute re-
quirements of the applications.

• Security administration mechanisms in an ESB environment can help to configure and man-
age access control of each connection to and from the ESB. On the other hand, content proc-
essed by the ESB may need to be selectively protected and exposed depending on routing and
mapping requirements.

22 | CMU/SEI-2007-TR-015

The choice among direct point-to-point, hub-and-spoke, or hybrid integration approaches is driven
by factors such as

• current and planned number of integrated applications and technologies

• throughput and response time requirements of current and future integrated applications

• communication patterns (e.g., synchronous, message queues, publish-subscribe) and growing
numbers of integrated services by current and future applications

• support requirements for new applications, business transactions, and data requirements

• adoption rate and maturity of new technologies and standards in the industry

• business, organizational, and regulatory dynamics (e.g., the speed with which acquired com-
panies must be integrated)

4.3 BUSINESS PROCESS EXECUTION LANGUAGE (BPEL)

BPEL is a standard used to describe workflow-oriented business processes [OASIS 2006a]. A
BPEL orchestration flow defines a business process through rules for coordinating the flow of
data, interfaces to services (typically Web services) that the process exposes and uses, and provi-
sions for handling exception conditions. Around the BPEL standard, vendors have created BPEL
tools that enable nontechnical business programmers to devise workflows visually. Once interface
descriptions for the participating services are in place, a BPEL tool can create BPEL code that
describes the workflow. The BPEL language is XML-based and has primitives such as “receive,”
“reply,” “throw,” and “wait.” The BPEL code is then posted to a BPEL engine (also called BPEL
server) that runs on the application server. When the event that triggers the workflow happens, the
BPEL engine coordinates the invocation of the services using the BPEL code as a script.

Capabilities typically provided within a BPEL orchestration implementation include the following
types of processing:

• business process flow patterns of documents and service interactions. Operations that are part
of a BPEL process flow may include

− sequential flows of service invocations: calling services in a serial sequence
− parallel service invocations: calling separate services in parallel, waiting for the re-

sponses before proceeding in a flow
− request-reply correlation: issuing an asynchronous service call and correlating a separate

service callback
− timed wait: wait for a period of time for a service call response

• human-workflow-specific and business-process-specific interaction patterns. Examples in-
clude

− work queue management (e.g., job prioritization, load balancing, automated reassign-
ment)

 SOFTWARE ENGINEERING INSTITUTE | 23

− dual control (also known as double-check or four-eyes) approval workflow processes. In
a procurement system for example, two levels of management could be required to ap-
prove the payment of invoices over a certain value.

• business process error handling. Example scenarios include

− message delivery expiration
− synchronous retry or abort upon failure
− asynchronous retry compensating transaction upon failure
− notification and heuristic resolution processes upon failure

Currently many SOA systems that implement business workflows are custom applications or are
based on proprietary products. In the long term, it will be commonplace for medium to large SOA
designs to rely on a BPEL engine for synchronizing internally and externally facing business
processes and service connections.

Section 5.11 presents quality attribute considerations and design questions related to BPEL.

4.4 STATIC VERSUS DYNAMIC WEB SERVICES

To invoke a service provider, a service user needs to determine the interface of the service (opera-
tions available, expected input and output) and locate the actual service. For static binding, as
shown in Figure 5, the service interface and location must be known when the service user is im-
plemented or deployed. The service user typically has a generated stub to the service interface and
retrieves the service location from a local configuration file. The service user can invoke the ser-
vice provider directly, and no private or public registry is involved.

Figure 5: Static Binding Example

For dynamic Web services, as shown in Figure 6, a provider must register the service to a registry
of services. The registry is queried by service users at runtime for the provider’s address and the
service contract. After acquiring the required information, the service user can invoke the opera-
tions of the service provider.

24 | CMU/SEI-2007-TR-015

Figure 6: Dynamic Binding Example

Static binding results in a tighter coupling between service users and providers. Changes to the
service location or contract can cause the service user to break at runtime when the service is in-
voked or during the marshalling and unmarshalling of the objects. The main advantage of static
binding is better performance, because the communication to the registry is avoided. However, in
some configurations where the registry is used to load-balance requests across a pool of service
providers, the overall throughput can be better than the static binding alternative. Static binding is
used frequently, because it is sufficient for most business scenarios and design solutions
[Zimmermann 2003].

For dynamic binding the required information for invocation is obtained at runtime, thereby re-
ducing the coupling between service users and providers. The service provider’s location can
change without affecting the service users. Multiple versions of interfaces can also be managed by
the service registry and coexist in production. However, the flexibility given by dynamic binding
requires service users and providers to have a predefined agreement on the syntax and semantics
of the interfaces. Performance is negatively affected because of the interaction with the service
registry. This performance overhead can be compensated by using the registry for load balancing.
In fact the registry can have many purposes other than dynamic discovery of services. Section 5.9
discusses the capabilities, tradeoffs, and design questions involved in the use of a registry in an
SOA solution.

 SOFTWARE ENGINEERING INSTITUTE | 25

4.5 EMERGING SOA-FOCUSED TECHNOLOGIES

A number of additional SOA standards, capabilities, best practices, products, and other technolo-
gies are emerging. Some architects latch on to the early use of new technologies and may mis-
name, misapply, overuse, or abuse their concepts in project-risking ways. The evaluator may need
to understand the impact of emerging technologies and raise tradeoff considerations during the
SOA architecture evaluation. These considerations can be more critical depending on the organi-
zation’s risk posture and technical capabilities. Below are some of the emerging areas to consider
(full treatment of these trends in SOA is beyond the scope of this report):

• maturing and emerging WS-* standards, such as those related to transaction management,
security, and reliable messaging (Some of these standards are discussed in Section 5.)

• the adoption of new language- and environment-specific standards, such as Service Compo-
nent Architecture (SCA) [OSOA 2007], Service Data Objects (SDO) [SDO 2006], Windows
Communication Foundation (WCF) [Microsoft 2007], and others

• Rich Internet Applications (RIAs) that directly use and combine service access from light-
weight user clients

• use of EDA approaches to system design

• architectures and products that are based on Complex Event Processing (CEP) and Event
Stream Processing (ESP)

26 | CMU/SEI-2007-TR-015

5 SOA Design Questions That Affect Quality Attributes

Architectural design decisions determine the ability of the system to meet functional and quality
attribute requirements. In the architecture evaluation, the architecture should be analyzed to reveal
its strengths and weaknesses, while eliciting any risks. This section covers the following topics
that are particularly relevant when designing SOA systems:

• target platform: Section 5.1

• synchronous versus asynchronous services : Section 5.2

• granularity of services: Section 5.3

• exception handling and fault recovery: Section 5.4

• security: Sections 5.5, 5.6, and 5.7

• XML optimization: Section 5.8

• use of a registry or services: Section 5.9

• legacy systems integration: Section 5.10

• BPEL and service orchestration: Section 5.11

• service versioning: Section 5.12

This list of design topics is not meant to be exhaustive or exclusive to SOA systems. It includes
design concerns that the authors find to be more prominent in the SOA space but are sometimes
overlooked in SOA projects. For each topic, we present potential evaluation questions that can be
raised in an architecture evaluation and that will lead to a discussion of design alternatives and
their implications. The recommendations are generic, and for each project, the implications of
each alternative must be evaluated in light of all the existing factors. We relate the technical dis-
cussion to typical requirements that could be affected by the design decision. The typical require-
ments are further described as general quality attribute scenarios in Appendix A and referred to as
P1, P2, …, A1, A2, and so forth.

5.1 WHAT IS KNOWN ABOUT THE TARGET PLATFORM?

Web services platforms can differ in their internal implementation and exposed functionality and
qualities. The architect should be familiar with the target platforms, including the runtime envi-
ronment for service user and service provider implementation components, the development envi-
ronment, the network infrastructure, and the platforms used by external services.

5.1.1 Quality Attribute Discussion

In distributed application solutions, many quality concerns are primarily handled or strongly af-
fected by the runtime environment. Examples include availability, throughput, interoperability,
fault recovery, and data privacy. The ability to satisfy an interoperability scenario like I1 (see Ap-
pendix A) is in great part determined by compatibility issues between the two platforms involved.

 SOFTWARE ENGINEERING INSTITUTE | 27

Availability requirements as expressed in the general scenarios A3 and A4 are typically addressed
by replication of software and hardware elements in the infrastructure. Replication mechanisms
are usually provided by the platform and require some knowledge to be configured and tuned.
Services provided by the infrastructure can partially handle security and reliability requirements
similar to S1, S2, S5, R1, and R2.

5.1.2 Sample Evaluation Questions
These questions can be used in the architecture evaluation to probe the influence of the target plat-
form in the achievement of the system requirements:

• Which Web services standards do the platforms of service users and providers implement? In
particular, what WS-I profile do they implement? For example, IBM WebSphere V6.1 im-
plements the WS-I Basic Profile V1.1. Let’s say an application deployed to that platform
needs to interact with an external service running on iPlanet Application Server V6.5, which
is an old platform that is not compliant with any WS-I profile. Interoperability issues may
arise due to compatibility problems between different versions of the WS standards imple-
mented in these platforms.

• Are SOAP messages automatically translated to and from objects by the platform? If so, the
service implementation does not need to implement that feature. However, the platform may
not offer the most efficient translation, and that may affect performance when services handle
large amounts of data.

• Which characteristics of the runtime platform may affect the security of the SOA solution?
For example, if service users and service providers communicate via a virtual private network
(VPN), the need for message-level security (see Section 5.5) may be relaxed.

Some questions are generic in the sense that they apply to more than SOA solutions:

• What properties in the runtime platform need to be tuned for the expected workload? The
architect should help define how many instances of http listeners, database connections,
server machines, and other architectural elements will be needed to meet the expected number
of requests.

• What mechanisms are in place in the IT infrastructure to increase security, availability, reli-
ability, and throughput? The hosting platform can totally or partially handle these properties
using mechanisms such as replication of servers, firewalls, proxies, and load balancers.

• What support exists for monitoring and event data logging? These mechanisms allow taking
measures, such as wait times, transaction volumes, and exception counts. These measures are
important to oversee the system in production but are also useful at design time when techni-
cal experiments and prototypes are conducted for reliability and performance analysis.

• What are the known issues and technical limitations of the target platform version being
used? Is the platform software maintained to patch levels to minimize vulnerabilities?

• Did the stakeholders who will create and deploy the system receive proper training on how to
use the tools and frameworks needed to create and run the system? SOA development usually
relies on several tools, such as ESB, object-to-WSDL translators, BPEL tools, and XML

28 | CMU/SEI-2007-TR-015

schema generators. If developers are not familiar with the tools, they may waste time config-
uring the environment or manually implementing features that the tools automate.

5.2 SYNCHRONOUS OR ASYNCHRONOUS SERVICES?

Services may be provided through either synchronous or asynchronous interfaces in an SOA.
Each option has pros and cons to consider, and the selection of a service interaction approach de-
pends on a combination of business and application logic requirements, existing component capa-
bilities (frequently, COTS or legacy applications support only one of the two service options, syn-
chronous or asynchronous), and other architectural factors.

5.2.1 Quality Attribute Discussion

The choice between synchronous or asynchronous for each service user and service provider in-
teraction can affect the system’s ability to meet quality attribute requirements similar to the ones
expressed by P1, P2, P3, R1, and I2 (see Appendix A). To aid in the evaluation process, the fol-
lowing table compares design tendencies in the use of synchronous versus asynchronous interac-
tions as they relate to quality attributes.

Table 3: Comparison of Synchronous and Asynchronous Services

Quality Attribute Synchronous Services Asynchronous Services

☺ Typically simpler to develop and
modify both service users and
providers

 Implementation is frequently more
complicated, because additional
application logic is required to deal
with the waiting and correlation of
responses.

 Behavior (e.g., timing and side
effects) dependencies beyond the
call interface make replacement
more difficult. This tendency may
result in brittle application designs.

☺ Lower coupling (applications and
components can be more easily re-
placed with alternative modules)

Modifiability

 It may be difficult to insert an ESB
or other brokering software be-
cause of performance or other be-
havior dependencies.

☺ Ease of inserting ESB or other bro-
kering software into conversations

☺ Expectation of and designed to
achieve better responsiveness.

 Overhead of receiving asynchro-
nous call responses and potential
for delays in queue processing and
failures

Performance

 If used for a service request that
could be processed asynchro-
nously, the result is unnecessary
blocking time.

☺ Allows background processing of
service requests with no blocking
time for service users

 SOFTWARE ENGINEERING INSTITUTE | 29

 Table 3: Comparison of Synchronous and Asynchronous Services, Continued

Quality Attribute Synchronous Services Asynchronous Services

Scalability Typically lower scalability for large
applications because of resource
consumption and response time
requirements for waiting service
calls.

☺ Typically can achieve best scalabil-
ity for SOA environments with large
applications through time and
server distribution of request proc-
essing

 More susceptible to complex dis-
tributed failures because of direct
interdependencies

☺ Better independent operation and
fault-tolerance

Reliability

☺ Simpler error and exception han-
dling designs

 Complex error/retry logic may be
required.

5.2.2 Sample Evaluation Questions

When evaluating service interfaces for synchronous versus asynchronous design, the following
questions help determine risks:

• Is the interaction between a given service user and provider synchronous or asynchronous?
Not all service operations are suitable for asynchronous processing.

• How are architectural decisions about the use of synchronous versus asynchronous designs
made? Are they driven by factors such as business requirements, legacy interface capabilities,
and technology features? Not all operations are suitable for both synchronous and asynchro-
nous processing. For example, processing an order in a Web store often can be handled asyn-
chronously, but searching a catalog is usually a synchronous operation.

• Are services defined in a manner that will allow their use either synchronously or asynchro-
nously? For example, are the interfaces stateless, and do they provide proper error-handling
information?

• Are there intermediate hops in the flow of an asynchronous message? If so, how are the par-
ties in the architecture identified and authenticated? Is data privacy enforced end to end?

• Does the asynchronous interface design correctly deal with error and retry logic?

5.3 COARSE- OR FINE-GRAINED SERVICES?

The granularity of a service refers to the scope of a service’s functionality. A coarse-grained ser-
vice typically consists of operations that require less communication and are designed to do more
work with fewer service calls than fine-grained services. Service interface granularity has archi-
tectural and business implications, and is a critical factor for achieving certain quality attributes
when implementing an SOA. Designing a service that is “right” grained depends primarily on
how the service will be used, but the architect should also consider which quality attributes are
most important to system stakeholders.

To illustrate the decision factors in selecting the granularity of a service, consider a simplistic ex-
ample of a restaurant selling sandwiches. A sandwich seller offering a coarse-grained service pro-

30 | CMU/SEI-2007-TR-015

vides sandwiches with several condiments included in the price. It does not make sense from a
sellers’ perspective of increasing efficiency to separately package and price every slice of bread,
the meat, and the condiments as separate menu items. The efficiency at the cash register alone
would be impacted; the cashier would be required to key in several items per sandwich. It also
does not make sense for a sandwich seller to require consumers to purchase sandwiches in large
quantities prepackaged on a pallet. Doing so would swing the coarse-grained/fine-grained pendu-
lum too far for the taste of most consumers. While this analogy may seem obvious, aligning
granular interfaces has been a common problem within distributed systems design. Poor align-
ment of interface utility versus functional requirements leads to failed or overly complicated and
costly designs. Granularity choices are always somewhat subjective and require performance, se-
curity, and ease-of-use tradeoffs.

5.3.1 Quality Attribute Discussion

Coarse-grained services can improve application performance by reducing the number of mes-
sages required to complete a transaction. However, messages to and from coarse-grained services
tend to be more verbose. Therefore, coarse-grained services have a negative impact in a perform-
ance scenario like P1 (see Appendix A), which is about the response time for a single request.
However, they normally have a positive impact for scenarios like P2 (see Appendix A) that talk
about the overall throughput of the system. A coarse-grained interface is less flexible from the
perspective of the service user and can negatively impact general modifiability scenarios like M3
(see Appendix A). If interfaces are coarse-grained, localized interface changes that benefit a sub-
set of the service users will impact more service users, and the overall cost of changes increases.
Fine-grained services enable service reuse and composition by giving the clients more control
over the steps of an operation.

Another quality that can be affected is security. A coarse-grained interface limits the potential
entry points to a component, which may simplify the management of access rights. However, it
does not allow for the flexible assignment of authorization for different operations.

Testability is also affected by the granularity of the service interface. In general, a coarse-grained
interface is easier to test, because it limits the number of possible paths by consolidating the steps
needed to process a user transaction under a single operation. Exposing more operations to the
consumer causes a loss of control for the service provider. In a consumer Web site, the order ser-
vice may require that a credit card is validated before an order can be submitted. A finer grained
design exposing all steps as separate operations opens the door for the possibility of orders being
submitted without the credit card’s validation. The service user is now responsible for ensuring
that steps are completed in the right order.

5.3.2 Sample Evaluation Questions

The following questions help determine whether there are any potential problems with the granu-
larity of the services:

• What are the service network’s bandwidth limitations? This can be potentially important to
achieve the desired response time and throughput as described in general scenarios P1, P2,

 SOFTWARE ENGINEERING INSTITUTE | 31

and P3 (see Appendix A). If the interfaces are too fine grained, the transmission and process-
ing of many small messages required to complete a task may be a performance risk. If the in-
terfaces are too coarse grained, the overhead of parsing a large data set may be a performance
risk.

• Do operations in the service interfaces map to transactional boundaries? Does each operation
correspond to an atomic transaction, or can the transaction span the invocation of two or more
operations? If services are stateless and each operation maps to an atomic transaction, it is
easier to implement replication of the service provider components for improved availability
and satisfy fault-recovery scenarios like R1 (see Appendix A).

• Are there ordering dependencies between operations? That is, is there a required order for the
invocation of the operations? These questions impact the level of effort required to complete
testing. A coarse-grained service interface that combines multiple ordered steps makes testing
and implementation easier by reducing the number of possible test paths.

• How stable are the business processes represented by this architecture? Are certain services
more likely to change than others? If services are more likely to change, it may make sense to
have finer grained interfaces to promote the satisfaction of scenarios similar to M3 (see Ap-
pendix A). It is possible that changes that benefit a subset of consumers will impact all con-
sumers. To explain this point more clearly, suppose that we have 6 operations exposed
through a fine-grained interface. Each of these has 5 different users. If one operation is
changed, 5 users will be affected. Then suppose that these 6 operations are now merged into 2
coarse-grained operations each with 15 different users. Now if one operation is changed, the
number of affected users grows from 5 to 15.

5.4 WHAT ARE THE STRATEGIES FOR EXCEPTION HANDLING AND FAULT
RECOVERY?

Achieving reliability, availability, and serviceability requirements is difficult in SOA systems.
The system may involve heterogeneous platforms and protocols, as well as external services. A
robust SOA-based architecture must deal with application and system failures at a variety of lev-
els:

• system infrastructure (e.g., server and storage hardware; operating system and drivers)

• networking

• data services (e.g., relational database or LDAP directory server)

• middleware services (e.g., application server; queuing and messaging systems)

• service user and service provider implementation

The types of failures that can occur in SOA applications include

• the failure or resource exhaustion of an underlying component (e.g., out of memory or full
queue)

• a formatting violation (e.g., invalid message against the XML schema)

32 | CMU/SEI-2007-TR-015

• application business logic defects (e.g., a coding error that results in an unhandled null pointer
exception)

• a failure of another application layer, or underlying data or legacy system service

• business rule failures, such as denial of access to a service based on user credentials and other
factors, and violation of validation rules (e.g., insufficient funds, exceeded daily trading limit)

Error-handling strategies must address various failure-duration scenarios that include

• intermittent failures. In this case, the strategy may be to offer a “back-off and retry” option.

• semi-permanent and recoverable failures. The strategy may be to abort the transaction and
notify users to retry the operation.

• permanent failures. The strategy may be to reroute transactions to an alternative service pro-
vider.

Establishment of proper debug, logging and tracing components, and standards help to detect fail-
ures and identify potential sources. Error-handling strategies should also manage the behavior of
the system under failure modes. For example, in fail-safe mode, the failure should not be propa-
gated to the point at which it compromises the whole system.

5.4.1 Quality Attribute Discussion

The quality and availability of diagnostic information to quickly isolate a root cause and the ap-
proach taken for error handling are key architectural areas of concern for distributed systems reli-
ability, availability, and serviceability (RAS). If the system has requirements similar to the ones
expressed in scenarios R1, R2, A1, A2, and S5, the architecture evaluation team should pay close
attention to the fault-recovery and error-handling strategies. These strategies may have a negative
impact on performance with overhead for persisting data for recovery, logging, and tracing.

5.4.2 Sample Evaluation Questions

The evaluation of exception-handling and fault-recovery strategies for an SOA should consider
the following questions:

• Which types of failures is the system subject to?

• Do the distributed application components behave correctly together in the event of an antici-
pated failure? For example

− Transaction rollback is performed to restore data to a consistent and correct state after a
failure. This may require components to use distributed transaction protocols like XA or
implement compensating transactions. Creating compensating transactions is challeng-
ing and more error-prone than relying on a transaction management service, but it may
be the only alternative when third-party services are involved.

− Failure notifications are generated to inform staff of the need for heuristic manual repair.
− Under failure conditions, mechanisms in the architecture prevent additional damage to

data and ensure correct behavior for concurrent users of the system (e.g., locking shared
data).

 SOFTWARE ENGINEERING INSTITUTE | 33

− Proper logging and audit-trail generation of failures is performed to allow rapid diagno-
ses and root cause repair for the issue. Designs should prescribe the tracing of key
events, stack trace information, and other data relevant to the failed transaction.

• Does the design make proper use of facilities within the target platform for managing errors?
For example

− In Web services platforms, is the SOAP fault mechanism used?
− In messaging systems, are abort/retry features and “dead-letter” handlers for asynchro-

nous messages used?
− In solutions that use an ESB or messaging system, are message format validation facili-

ties in use? For example, the design must deal with “poison message” scenarios where a
message causes the transaction to be aborted and is then returned to the queue for retry,
resulting in an infinite loop.

− In messaging systems, are persisted queues used for increased reliability?
• Do services provide idempotent and stateless operations where possible? A stateless and

idempotent design is recommended to simplify error handling and recovery.

• Does the solution involve a messaging system, and are there cross-platform interoperability
requirements? If so, does the platform support the WS-ReliableMessaging or WS-Reliability
standards (see Section 4.1.3)?

5.5 HTTPS OR MESSAGE-LEVEL SECURITY?

A full range of architectural security concerns must be taken into consideration when evaluating
an SOA environment, including the infrastructure (hardware, operating systems, networking),
connected systems, authentication schemes, authorization, data privacy, non-repudiation, physical
access, policy, and others. Full treatment of security in a distributed service-oriented environment
is beyond the scope of this report. This section and the next two sections give special considera-
tion to areas that have high impact: message-level data privacy, authentication, and authorization.

The https versus message-level security design aspect refers to the protection of messages ex-
changed between service users and service providers in an SOA solution using the Web services
technology. The simplest alternative consists of using https (http over SSL) to secure the commu-
nication pipe at the transport level. In addition to encryption, https can optionally be used for au-
thentication using digital certificates. Because there can be multiple hops between service user
and provider, each point-to-point communication is secured separately, as illustrated in Figure 7.

Figure 7: Https Security (from the work of Mitchell [Mitchell 2005])

Message-level security provides an end-to-end solution that protects the message itself, as illus-
trated in Figure 8. The actual content of the message is modified, and the security aspects are em-

34 | CMU/SEI-2007-TR-015

bedded directly in the message. Standards such as WS-Security are needed to enable interoperable
message-level security. At the message level, WS-Security describes how to authenticate services,
how to ensure the integrity of services, and how to maintain confidentiality.

Figure 8: Message-Level Security (from the work of Mitchell [Mitchell 2005])

5.5.1 Quality Attribute Discussion

Embedding security as part of the message allows for a flexible end-to-end solution. For example,
it allows the encryption of only portions of the message. Conversely, https encrypts the entire
message and is only available from point to point at the transport layer. Thus, https does not pro-
tect the message at the application level and in locations where it is processed or stored, such as
an ESB.

Message-level security is also extensible, because the platform configuration can be amended to
include additional security credentials as needs change. The downside is that complexity is in-
creased by requiring careful management of which parts of a message need to be secured. Interop-
erability is negatively impacted, because all parties that parse secure portions of the message need
to support the security specifications in use. General interoperability scenarios like I1 are difficult
to satisfy with the current state of the support for message-level security standards. On the other
hand, https is simple to implement and highly interoperable. Also, performance is usually better
when https is used instead of message-level security [Shirasuna 2004].

5.5.2 Sample Evaluation Questions

Deception and usurpation threats are common to distributed systems. Messages can be used to
transmit viruses that usurp commands through shells or other mechanisms throughout the system.
Common attacks include SQL injection, LDAP injection, and XQuery injection. These attacks can
be used to change privileges, drop and alter tables, and change schema information [Lipson 2006].
Most of the following questions attempt to ascertain what mechanisms the architecture uses to
deal with deception and usurpation threats:

• For each service user and provider interaction, does the architecture prescribe the use of https
or message-level security?

• Does the architecture provide a mechanism (e.g., digital signatures) to ensure that a third
party will not intercept and modify messages (tampering)? Which certificate authority is used
for digital certificates? This question may affect general scenarios S2 and S5 (see Appendix
A).

• Does your system interact with other systems that provide or require certificates? Are there
known interoperability issues with respect to certificate exchange for the platforms involved?
Note that not all certificate authorities are compatible. Scenarios like I1 may be affected (see
Appendix A).

 SOFTWARE ENGINEERING INSTITUTE | 35

• What standards are you considering to support message-level security (e.g., WS-Security,
XML Encryption, XML Signature)? The choice may affect interoperability scenarios like I1
(see Appendix A).

• How does the architecture protect against viruses, SQL injection attacks, and malicious
scripts embedded in messages? The answer is related to general scenarios S2 and S5 (see Ap-
pendix A).

• How does the architecture handle message filtering? An example would be to block messages
from certain IP addresses.

• Can the architecture support message-level security for REST and SOAP-based Web services
? This may affect interoperability as in general scenario I1 (see Appendix A).

5.6 HOW IS SERVICE AUTHENTICATION MANAGED?

There are SOA-specific authentication concerns that an evaluator should consider. These concerns
are important even when the SOA solution does not use or provide services to external parties.

The authentication of participants in SOA integration scenarios may include requirements for au-
thentication

• of an end user in a specific role

• of client applications

• across security realms or directory servers

• using mechanisms such as passwords, a Public Key Infrastructure (PKI), mutual authentica-
tion, tokens, or biometrics

5.6.1 Quality Attribute Discussion

When designing SOA systems, security tradeoff decisions are frequently required between busi-
ness requirements and IT policy, not only for the service provider application but also for any
connected service users. Authentication mechanisms are often required to satisfy security re-
quirements similar to S3 and S4. However, adding levels of authentication to the architecture
tends to negatively affect

• performance: overhead of authentication calls

• modifiability: additional code and deployment requirements to ensure security

• usability: complexity of managing and presenting credentials such as passwords, certificates,
and tokens

• interoperability: incompatibility between authentication mechanisms supported by participant
platforms

5.6.2 Sample Evaluation Questions
Some of the authentication-related questions to consider as an SOA architecture evaluator include

36 | CMU/SEI-2007-TR-015

• What kind (e.g., LDAP based) and scope (e.g., enterprise wide, local) of security domain are
going to be used for managing the identity for each participating system? How is the domain
information shared across the participant applications that reside in different security do-
mains?

• What authentication mechanisms are going to be used in each service user-provider interac-
tion?

• What representation format is used to exchange security information between applications?
The SAML [OASIS 2005] standard allows sharing security information about the partici-
pant’s identity and access rights, and is used to implement a single sign-on (SSO) solution
across services. Custom or proprietary approaches may limit interoperability with external
services.

• If certificate or token-based services are used, do service users authenticate themselves to the
service provider, does the service provider authenticate itself to service users, or is there mu-
tual authentication?

• How is key management performed? Are there adequate policies and procedures for manag-
ing key exchanges and certificate signing? How will policies be enforced across participant
systems?

• Does the architecture cover the full life cycle for end-user registration, validation, password
reset, rights enablement, and other activities related to access control?

• Service implementations often need to access other resources, such as databases, other ser-
vices, and components. How is the identity information used by service implementations,
such as IDs and passwords, stored? Is it hard-coded (which is obviously bad) or centrally con-
figured by an administrator?

5.7 HOW IS SERVICE ACCESS AUTHORIZATION PERFORMED?

As the adoption of an SOA approach grows within an organization and its external partners, the
architect must comprehend the business process perspective and the technical security concerns to
design a good authorization scheme and properly evaluate tradeoffs. It is challenging, because it
requires an understanding of the access permissions required by different participants of the solu-
tion to different resources and operations available. Additionally, in certain industries there are
regulatory-driven security concerns that must be accounted for when securing service interactions
and data (e.g., HIPAA in healthcare or Sarbanes-Oxley for publicly traded U.S. firms.)

Additional challenges in implementing authorization and other security concerns in an SOA solu-
tion are limitations with respect to

• interoperability of security standards

• security implementations in legacy components that do not accommodate use as an external
service (e.g., lack of support for an external LDAP directory server)

• identity management policy and technology across organizations

 SOFTWARE ENGINEERING INSTITUTE | 37

5.7.1 Quality Attribute Discussion

As outlined in Section 5.6.1 with respect to authentication, for authorization in SOA solutions,
there can be security tradeoffs between business requirements and the IT policy for the server pro-
vider application and the service users. Also, adding levels of authorization to the architecture
tends to negatively affect the same factors as authorization: performance, modifiability, usability,
and interoperability.

5.7.2 Sample Evaluation Questions

In the evaluation of access authorization in an SOA environment, some of the areas of concern
include

• What authorization mechanisms and standards (e.g., SAML) are going to be used to protect
access to services? What kind of security domain will be used for managing permissions?

• Do various exposed service operations within the same service require different rights? Sup-
pose that one is designing a service with three operations: browse catalog, place order, and
update catalog. The first operation is open to any user, the second is open to registered users,
and the third is open to administrators only. Depending on the authorization mechanism, dif-
ferent access rights within the same service are not easily implemented, and a better option is
to implement multiple services.

• Is declarative authorization being used as opposed to programmatic authorization? Declara-
tive security provided by the platform is preferable, because it separates security concerns
from the business logic and may be changed at deployment time or runtime without modify-
ing the source code. Programmatic security is also typically more error-prone. However, de-
clarative security may not be viable where context information is needed to determine au-
thorization rights (e.g., account information access may be restricted based on a combination
of the time-of-day and prior management approval).

5.8 IS XML OPTIMIZATION BEING USED?

XML is the most common format for data representation in SOA solutions. It is flexible, extensi-
ble, widely adopted, and the underpinning for interoperability in most SOA technologies.

5.8.1 Quality Attribute Discussion

XML is text based and yields payloads that can be 10 to 20 times larger than the equivalent binary
representation [Schmelzer 2002]. Three activities may be performed when processing XML docu-
ments, all of which are CPU and memory intensive: parsing, validation, and transformation. Strict
performance requirements may call for XML optimization mechanisms to be discussed at the ar-
chitecture level. Performance requirements, such as in scenarios P1, P2, and P3, are harder to
meet when large amounts of data are transmitted and processed in XML format.

5.8.2 Sample Evaluation Questions

Questions to raise in the architecture evaluation include

38 | CMU/SEI-2007-TR-015

• Is XML data compressed (e.g., Zip format)? The tradeoff between performance and interop-
erability is that compression requires that both use the same algorithm to interoperate.

• Does the hardware infrastructure include XML appliances? These network devices use spe-
cialized hardware and/or software to validate, transform, and parse XML messages faster.
They have built-in support for standards that may include XML schema, XSLT, SOAP, and
WS-Security.

• Can XML validation be turned off? That is possible when documents are known to be valid.
If both service users and providers are developed by the same organization, versions of the
XML documents that don’t refer to a DTD or XML schema could be used in some cases.

• Are remote documents referenced in XML documents (e.g., an external schema) cached lo-
cally?

• Is the appropriate parsing model being used? When the XML document has to be accessed
randomly or processed multiple times, DOM is more appropriate. When the elements in the
documents have to be processed serially and only once, SAX yields better performance.

• Are validation and transformation of the XML data in a service request performed as soon as
the request arrives? The early transformation allows smaller fragments of data in a format
suitable for processing to be passed to the different modules that implement the service logic.

5.9 IS A SERVICE REGISTRY BEING USED?

In larger and rapidly changing SOA environments, it is difficult to manage the availability, capa-
bilities, policies for use, and location of shared services. This difficulty results in the risk of qual-
ity failures. An SOA service registry provides the registration of services, management of meta-
data, and automation for the creation of and access to services. It is a central management service
with the following capabilities:

• naming and location of service endpoints

• registration and querying of service descriptions including:

− interface descriptions (WSDL) and XML schemas
− metadata describing attributes of the service
− security information about accessing the service
− history and versioning information about the service

• dynamic service matching and binding

• support to the life cycle of services, including the following phases

− inception: early business-function-level and (later) technical-level service definitions
− design collaboration: coordination of interface design across applications
− service provider implementation: defining the WSDL interface
− service user implementation: retrieving WSDL and metadata for creating the client code
− client provisioning: managing client access to services
− testing and quality assurance

 SOFTWARE ENGINEERING INSTITUTE | 39

− deployment
− change management
− production
− versioning
− decommissioning

5.9.1 Quality Attribute Discussion

The implementation of a service registry primarily targets improvements to modifiability, man-
ageability, and reliability of the overall SOA. The service user performance and maintainability
may be negatively impacted by the overhead and complexity of the service lookup and related
security. Interoperability issues may also exist with the use of an SOA registry because the stan-
dards are new.

5.9.2 Sample Evaluation Questions

The following questions help the architecture evaluator determine the registry’s role and its effect
on quality attributes of the overall architecture:

• Is a registry being used? If not, how do various parties using shared services know about the
availability and capability of services? How is service information maintained to avoid un-
needed duplication?

• What policies are in place to ensure the proper use of registries (versus circumvention using
direct service location calls)?

• How is service metadata defined and managed within and outside of the registry? Are long-
term considerations of future possible needs factored into the design?

• For which phases of the SOA application life cycle (inception through decommissioning) is
the registry being used?

• How are service access control and change management policies governed? Are proper con-
trols in place to balance security, modifiability, and compliance with IT and other standards?
For example, new services from partners are only added to the registry after business, legal,
security, and IT SLAs have been established. Updates to partner services then require ver-
sioning and adherence to the change management process.

• Is the registry being used for the dynamic routing of service calls (e.g., for failover, load bal-
ancing, and application partitioning)? If so, is the registry installation a single point of failure?
Does it meet performance and failover time requirements?

• Is the registry interface based on standards like UDDI V3? Standards help development tools,
administrative tools, and runtime components to interoperate with the registry.

• Does the registry provide validation or user notification for the addition or modification of
services? These functions help keep the service aligned with standards and prevent the mis-
match of client implementations.

• Is the registry public or private? Does the registry implementation properly handle the differ-
entiation of internal and external services?

40 | CMU/SEI-2007-TR-015

• Are there any technical requirements for the service users, such as “the service user must sup-
port https?”

• What types of service implementation policies are enforced by your organization?3 Could
these policies be enforced through the registry?

• Have you considered caching service locations to avoid calls to the registry and improve per-
formance?

5.10 HOW ARE LEGACY SYSTEMS INTEGRATED?

There is typically more than one reasonable way to integrate a legacy system into an SOA envi-
ronment. There are cost/benefit tradeoffs that an architect must weigh when selecting the integra-
tion strategy. Typical historical approaches to legacy system integration are

• direct database access

• batch-oriented file transfers

• database synchronization via extract, transform, and load (ETL) or custom tools

• direct API calls to legacy software interfaces

• messaging systems (e.g., IBM WebSphere MQ)

• screen scrapping

• Web services wrappers

• ESB with adapters for the legacy platform

• other application- and technology-specific gateways/bridges/adapters

5.10.1 Quality Attribute Discussion

A key goal of SOA is to improve the ability and agility to integrate new and existing systems as
services. Most of the quality attribute discussion throughout this report related to SOA also ap-
plies to legacy systems, since they are simply other connected systems that provide services and
run on different platforms. The integration of a legacy system is often expressed in interoperabil-
ity scenarios similar to I2. The challenge is to conciliate diverging quality attribute requirements
of the new and legacy systems.

5.10.2 Sample Evaluation Questions

The design considerations that drive the selection between alternative approaches for integrating a
new system to a legacy system4 include

• What mechanisms or strategies can be used to integrate the platforms of the new and legacy
systems? How do these solutions compare in terms of

3 For instance, a policy could be created to allow only SOAP bindings.

4 For the purpose of the evaluation questions, a legacy system is one that does not directly support a Web Service inter-
face.

 SOFTWARE ENGINEERING INSTITUTE | 41

− complexity and cost of implementation vis-à-vis the available team schedule and skill set
(e.g., Web services may not be readily supported or may be extremely cost-ineffective to
establish in some legacy environments)?

− performance, given the expected number of calls and desired response times?
− security, given the access control and data privacy requirements in both systems?
− reliability and support to distributed transactions?

• With respect to timeliness of executing operations or updating data sources, is there a mis-
match between what is required in the new system and what is available in the legacy system
(e.g., live real-time data sharing compared to daily batch updates compared to monthly shared
updates)?

• What are the transactional access requirements for shared data in the legacy system (e.g.,
read-only versus concurrent read/write access by more than one application)? The number of
calls to a legacy transaction may increase tremendously after the integration to the SOA archi-
tecture.

• What are the performance requirements for operations that involve interaction with the legacy
system? For example, a synchronized full copy of order data from a legacy system of record
may be needed for a consumer-facing Web application to provide fast access to order data.

• Are there SLAs between the new system and the legacy system covering properties such as
communication performance, network security, availability, access control policies, and audit
ability? For example, how do the availability requirements for the new system compare to the
availability capabilities of the legacy system? Many legacy systems did not require 24-hour
operation and provided batch windows during which transactional access was locked out.

• What is the anticipated lifetime of the legacy system? Is migrating the legacy system to the
new platform an option? For example, it may be a better solution to migrate a legacy COBOL
application to the new platform rather than to create a Web services wrapper around it in case
the COBOL application is retired soon.

• Are there quality issues within legacy system source data? Frequently, loose data integrity
constraints, manual data entry processes, and optimizations to save space resulted in poor data
quality compared to expectations for modernized systems.

• Is the interface granularity of legacy components suitable for accessing them as services in an
SOA?

5.11 IS BPEL USED FOR SERVICE ORCHESTRATION?

An overview of BPEL is provided in Section 4.3. This section outlines some of the factors that an
evaluator should consider while reviewing the orchestration aspects of an SOA design.

5.11.1 Quality Attribute Discussion

An architecture evaluator for an SOA application should consider BPEL from multiple perspec-
tives: as a modeling language, as an implementation language, and as the runtime engine. The
primary architecture quality attributes affected by the use of BPEL are

42 | CMU/SEI-2007-TR-015

• modifiability. Using BPEL to externalize process flow logic from source code allows easier
implementation of business rules. Process workflow can be changed easily in the visual BPEL
tool, which generates the BPEL code that will be deployed to the server.

• interoperability. The BPEL engine allows systems with disparate underlying platforms (e.g.,
Java and .NET) to interact through Web services technology. On the other hand, the BPEL
standard is still emerging and inter-vendor interoperability limitations exist.

• performance. Additional software layers imposed by a BPEL engine, overhead to call the ser-
vice interface, and the cost of BPEL code interpretation may negatively impact performance.

• cost. The overall system complexity, implementation cost, and total cost of ownership are
increased. The increase may not be acceptable in simple environments where the cost of im-
plementing and maintaining custom-coded process flow is less than the cost of implementing
a BPEL-based application.

• reliability. Better defined and constrained sequencing of service interactions and exception
handling results in more robust service integration behavior at an application level (when
compared to custom-developed workflow applications). On the other hand, the additional
complexity may cause reliability issues at a system/administrative level.

5.11.2 Sample Evaluation Questions

The questions below help evaluate design decisions related to BPEL:

• Does the BPEL engine make significant runtime status and issues available to support and
maintenance staff?

• Are BPEL workflows focused on the business process and its requirements for modifiability?
Some examples include

− Are business rules and their parameters properly externalized for modification at run-
time?

− Does BPEL process design allow the easy replacement of service providers? This as-
sumes that the service provider supplies the same, or an ESB-mapped, interface to the
services used within the BPEL workflow definition.

− Does the BPEL process and environment provide support for monitoring and logging
event data to allow the measurement of business metrics, such as wait times, transaction
volumes, and exception counts?

• Does each of the implemented BPEL processes properly deal with business and technical ex-
ception conditions and the need for compensating transactions?

• Does the BPEL engine generate audit trails with sufficient information to support transaction
traceability and regulatory requirements? Does the audit trail information provide necessary
detail to support non-repudiation requirements?

• Are BPEL processes designed with proper decoupling between services? For example, can
one service in the process be changed without affecting every other service in the BPEL
workflow?

 SOFTWARE ENGINEERING INSTITUTE | 43

• Is BPEL being circumvented for poor reasons or being overused for unintended purposes?
Developers may try to circumvent the use of BPEL due to ignorance of its capabilities or for
sociopolitical issues. In other cases, BPEL may be overused or misused because of a lack of
understanding or the technologists’ zeal to use something new.

5.12 WHAT IS THE APPROACH FOR SERVICE VERSIONING?

Services can be deployed and versioned independently of other system components. A new ver-
sion of a service may be required not only when the interface syntax changes but also when any
change in the service interface or implementation occurs that might impact consumer execution
[Lublinsky 2007]. For example, if the new implementation changed the pre-condition for an exist-
ing operation, some service users’ requests might be rejected. Another serious problem occurs
when qualities of a service change, and the requests are processed. The resulting mismatch of as-
sumptions between the provider and the user can lead to catastrophic failure. When the service is
used by an unknown number of external service users, a common requirement is for old and new
versions to coexist.

5.12.1 Quality Attribute Discussion

Service interfaces should be carefully designed to accommodate foreseeable service user require-
ments. But change is inevitable and a flexible and scalable versioning approach is required by
modifiability scenarios like M2. The need to deploy and maintain multiple versions of different
services increases the complexity of the configuration management and deployment processes. It
may also cause a performance overhead with the introduction of intermediaries to route requests
or resolve the address of the requested version.

5.12.2 Sample Evaluation Questions

The questions below help architects evaluate design decisions related to service versioning:

• What is the unit of versioning? Is it the whole service with all operations or individual opera-
tions within a service? Versioning operations requires deploying each operation with its own
endpoint address. Service invocation becomes more complex, because the service user has to
specify the service, the operation, and the version of the operation in the request. However,
the impact of changes to service users is minimized, because only users of the altered opera-
tion are affected. Moreover, it allows different SLAs for different operations within the same
service [Lublinsky 2007].

• What approach is used for schema versioning? Very often, service operations are defined with
a standard signature equivalent to XMLoutput serviceOperation(XMLinput). The
input and output are defined by XML schemas. The signature of the operation never changes,
but the XML schemas can change. A simple alternative for the schema versioning is to use
the optional “version” attribute in the XML schema definition. Another approach is to create
a new namespace for each new version. Other alternatives have different advantages and
disadvantages [xFront 2007].

44 | CMU/SEI-2007-TR-015

• How long should old versions of services/operations be preserved? Extending this period
increases the effort to manage a large number of versions. Shortening the period imposes
shorter deadlines for service users to perform upgrades [Lublinsky 2007].

• How are multiple versions concurrently deployed? One approach is to deploy all versions
under the same endpoint address. Service requests indicate the required operation and version,
and a routing component (e.g., an ESB) receives requests and dispatches them to the
appropriate version of the service implementation. The benefit is that service addressing is
simpler to implement in the service user. Another approach is to assign a different endpoint
address to each version. The service user needs to resolve the endpoint address, typically by
using a service registry, for the required version [Lublisnky 2007].

 SOFTWARE ENGINEERING INSTITUTE | 45

46 | CMU/SEI-2007-TR-015

6 SOA Architecture Evaluation Example

The goal of this section is to show how the information discussed in Section 3 and the technical
considerations presented in Sections 4 and 5 can be used to evaluate the architecture of an SOA
system. We use a sample application and describe important aspects of performing an architecture
evaluation. We follow the ATAM, briefly described in the first subsection. The ATAM analysis
of the quality attribute scenarios gives insight into how well a particular SOA-based architecture
satisfies the particular quality attribute goals of these scenarios and how certain quality attributes
interact with each other in an SOA context. The results shown here are a subset of the information
included in an ATAM report. We focus on individual scenarios and the architectural approaches
used to build the sample system. When applicable, the scenario analysis provides references to the
sections that address these architectural approaches.

6.1 ARCHITECTURE EVALUATION USING THE ATAM

What does it mean to say that a given software architecture is suitable for its intended purposes?
At the SEI we believe that the suitability of an architecture is determined by the quality attribute
requirements that are important to the stakeholders of a system. The ATAM relies on the elicita-
tion of quality attribute scenarios from a diverse group of system stakeholders. The method was
created to uncover the risks and tradeoffs reflected in architectural decisions relating to those
quality attribute requirements. Quality attributes, also known as nonfunctional requirements, in-
clude usability, performance, scalability, reliability, security, and modifiability. Quality attribute
scenarios give precise statements of usage, performance and growth requirements, various types
of failures, and various potential threats and modifications [Bass 2003]. Once the important qual-
ity attributes are identified, the architectural decisions relevant to each high-priority scenario can
be illuminated and analyzed with respect to their appropriateness [Barbacci 2003]. The resulting
analysis yields

• risks: architectural decisions that might create future problems for some quality attribute.
A sample risk: The current version of the Database Management System is no longer sup-
ported by the vendor; therefore, no patches for security vulnerabilities will be created.

• non-risks: architectural decisions that are appropriate in the context of the quality attrib-
ute that they affect. For example, the decision to introduce concurrency improves latency;
the worst-case execution time for all threads is less than 50% of its deadline.

• tradeoffs: architectural decisions that have an effect on more than one quality attribute.
For example, the decision to introduce concurrency improves latency but increases the
cost of change for the affected modules.

• sensitivity points: a property of one or more components, and/or component relation-
ships, critical for achieving a particular quality attribute requirement. For example, a de-

 SOFTWARE ENGINEERING INSTITUTE | 47

cision is made to choose REST over SOAP-based Web services for communication be-
tween service users and providers (see Section 4.1).

The ATAM method consists of the following nine steps:

1. Present the ATAM: The evaluation team presents a quick overview of the ATAM steps, the
techniques used, and the outputs from the process.

2. Present the business drivers: The system manager briefly presents the business drivers and
context for the architecture.

3. Present the architecture: The architect presents an overview of the architecture.

4. Identify architectural approaches: The evaluation team and the architect itemize the archi-
tectural approaches discovered in the previous step.

5. Generate the quality attribute utility tree: A small group of technically oriented stake-
holders identifies, prioritizes, and refines the most important quality attribute goals in a util-
ity tree format.

6. Analyze the architectural approaches: The evaluation team probes the architectural ap-
proaches in light of the quality attributes to identify risks, non-risks, and tradeoffs. To probe
the architecture, they use quality attribute questions similar to the ones presented in Section
5.

7. Brainstorm and prioritize scenarios: A larger and more diverse group of stakeholders cre-
ates scenarios that represent their various interests. Then the group votes to prioritize the
scenarios based on their relative importance.

8. Analyze architectural approaches: The evaluation team continues to identify risks, non-
risks, and tradeoffs while noting the impact of each scenario on the architectural approaches.

9. Present results: The evaluation team recapitulates the ATAM steps, outputs, and recom-
mendations.

These steps are typically carried out in two phases.5 Phase 1 is architect-centric and concentrates
on eliciting and analyzing architectural information. This phase includes a small group of techni-
cally oriented stakeholders concentrating on Steps 1 to 6. Phase 2 is stakeholder-centric, elicits
points of view from a more diverse group of stakeholders, and verifies the results of the first
phase. This phase involves a larger group of stakeholders, builds on the work of the first phase,
and focuses on Steps 7 through 9 [Jones 2001].

A final report of the ATAM results include a summary of the business drivers, the architectural
approaches, a utility tree, the analysis of each chosen scenario, and important conclusions. All
these results are recorded visually, so stakeholders can verify the correct identification of the re-
sults.

5 The ATAM also consists of a planning and preparation Phase 0. In this phase, the evaluation team looks at the existing

architecture documentation to identify questions or areas of incompleteness. If the documentation is deemed insufficient
to express a sound understanding of the multiple structures of the architecture, the evaluation does not proceed to Phase
1 (this constitutes a “no-go” decision).

48 | CMU/SEI-2007-TR-015

6.2 SAMPLE APPLICATION

The system used as an example in this report is an adapted version of the Adventure Builder Ref-
erence application, which was developed in the context of the Java BluePrints program at Sun
Microsystems [Sun 2007a]. This application was chosen because the functionality is easy to un-
derstand, and the source code, documentation, and other artifacts are publicly available for
download. Also available is a book on Web services that explains the design and implementation
of the application [Singh 2004]. We modified the architecture and made several assumptions
about the business context and requirements of the system to make it a more interesting illustra-
tion of an SOA solution.

6.2.1 Functionality

Adventure Builder is a fictitious company that sells adventure packages for vacationers over the
Internet. The system performs four basic operations (see Figure 9):

1. The user can visit the Adventure Builder Web site and browse the catalog of travel packages,
which include flights to specific destinations, lodging options, and activities that can be pur-
chased in advance. Activities include mountain biking, fishing, surfing classes, hot air bal-
loon tours, and scuba diving. The user can select transportation, accommodation, and various
activities to build his/her own adventure trip.

2. The user can place an order for a vacation package. To process this order, the system has to
interact with several external entities. A bank will approve the customer payment, airline
companies will provide the flights, lodging providers will book the hotel rooms, and busi-
nesses that provide vacation activities will schedule the activities selected by the customer.

3. After an order is placed, the user can return to check the status of his/her order. This is nec-
essary because some interactions with external entities are processed in the background and
may take hours or days to complete.

4. The internal system periodically interacts with its business partners (transportation, lodging,
and activity providers) to update the catalog with the most recent offerings.

 SOFTWARE ENGINEERING INSTITUTE | 49

Figure 9: Basic Operations of Adventure Builder (UML Use Case Diagram)

6.2.2 Architecture Description

Figure 10 is a diagram of the top-level runtime view of the architecture. End users access the sys-
tem using a Web browser. On the server side, the system is deployed as two distinct J2EE applica-
tions. One is called Consumer Web site and receives all requests from the users. Catalog browsing
requests are processed by accessing the Adventure Catalog database. Purchase order and order
tracking requests are processed by interacting with the other J2EE application, called Order Proc-
essing Center (OPC). OPC interacts with external service providers to fulfill order requests.

In the Web services technology, the entry point for the interaction between a service user and a
service provider is called the Web services endpoint. In the diagram it is represented by a “lolly-
pop” connected to the service provider. The endpoints are labeled with the name of the corre-
sponding WSDL interface descriptions.

The external service implementation platform does not need to be known6 to create the Adventure
Builder architecture. That is why all external services are represented as gray rectangles in Figure
10. In reality, the various external service providers could use different technologies. Figure 11
depicts a possible scenario with exemplar external services.

6 In practice there are platform-specific features that may hinder interoperability, as discussed in Section 5.

50 | CMU/SEI-2007-TR-015

 Figure 10: Top-Level Runtime View of the Adventure Builder Architecture

OPC acts as a service user when it interacts with Airline Provider, Lodging Provider, and Activity
Provider. These interactions are asynchronous, because processing the requests can take a long
time and the OPC application should not be blocked waiting for the results. For that reason, OPC
also provides a callback endpoint (called Web Service Broker in the diagram). The airline, lodg-
ing, and activity external Web services interact asynchronously with OPC via the Web Service
Broker endpoint to return the results of the original requests. The interaction sequence that takes
place between service users and providers when a vacationer places an order is depicted in Figure
12.

 SOFTWARE ENGINEERING INSTITUTE | 51

Figure 11: Runtime View with Exemplar External Services

Figure 12: Sequence Diagram for Placing an Order

52 | CMU/SEI-2007-TR-015

6.2.3 Quality Attribute Scenarios

Table 4 shows some quality attribute requirements specified using quality attribute scenarios for
the Adventure Builder application. These scenarios are only a representative sample of possible
quality attribute scenarios that may be relevant to an SOA-based architecture.

Table 4: Quality Attribute Scenarios for the Adventure Builder Application

Quality Attribute Scenario

Scenario 1. Modifiability • (Source) Business Analyst/Customer

• (Stimulus) Add a new business partner (transportation, lodging,
or activity provider) to use Adventure Builder’s predefined Web
services .

• (Artifact) OPC

• (Environment) Business partner familiar with the OPC interface
and Web services technology

• (Response) New business partner is added using Adventure
Builder’s Web services

• (Response Measure) No more than one person-day of Adven-
ture Builder team effort is required for the implementation (legal
and financial agreements are not included).

Scenario 2. Modifiability • (Source) Business Analyst/Customer

• (Stimulus) Add a new airline provider that uses its own Web
services interface.

• (Artifact) OPC

• (Environment) Developers have already studied the airline
provider interface definition.

• (Response) New airline provider is added that uses its own
Web services .

• (Response Measure) No more than 10 person-days of effort
are required for the implementation (legal and financial agree-
ments are not included).

 SOFTWARE ENGINEERING INSTITUTE | 53

Table 4: Quality Attribute Scenarios for the Adventure Builder Application, Continued

Quality Attribute Scenario

Scenario 3. Modifiability • (Source) Business Analyst/Customer

• (Stimulus) Add weather information for selected destinations
that includes average daily temperature and average monthly
precipitation.

• (Artifact) Consumer Web site

• (Environment) Developers familiar with the interface definition
of the weather service

• (Response) The external service that provides weather infor-
mation is integrated with the system, and the new feature is
available to Adventure Builder users.

• (Response Measure) No more than two person-months of ef-
fort are required for the implementation.

Scenario 4. Perform-
ance

• (Source) User

• (Stimulus) User submits an order for a package to the Con-
sumer Web site.

• (Artifact) Adventure Builder system and the Bank

• (Environment) Normal operation

• (Response) The Consumer Web site notifies the user that the
order has been successfully submitted and is being processed
by the OPC.

• (Response Measure) The system responds to the user in less
than five seconds.

Scenario 5. Reliability • (Source) External to system

• (Stimulus) The Consumer Web site sent a purchase order re-
quest to the OPC. The OPC processed that request but didn’t
reply to Consumer Website within five seconds, so the Con-
sumer Web site resends the request to the OPC.

• (Artifact) Adventure Builder system

• (Environment) Normal operation

• (Response) The OPC receives the duplicate request, but the
consumer is not double-charged, data remains in a consistent
state, and the Consumer Web site is notified that the original
request was successful.

• (Response Measure) In 100% of the transactions

54 | CMU/SEI-2007-TR-015

Table 4: Quality Attribute Scenarios for the Adventure Builder Application, Continued

Quality Attribute Scenario

Scenario 6. Reliability • (Source) System failure in the OPC

• (Stimulus) The OPC sends a request to the bank to charge a
credit card for a purchased travel package; before receiving the
reply from the bank, the OPC crashes.

• (Artifact) OPC and bank service

• (Environment) Failure mode

• (Response) The system recovers in a correct and consistent
way, and the credit card is charged only once.

• (Response Measure) In 100% of the cases

Scenario 7. Availability • (Source) Internal to the system

• (Stimulus) Fault occurs in the OPC

• (Artifact) OPC

• (Environment) Under normal operation

• (Response) The system administrator is notified of the fault; the
system continues taking order requests; another OPC instance
is created; and data remains in consistent state.

• (Response Measure) The fault is detected, and failover action
is taken within 30 seconds.

Scenario 8. Security/
Availability

• (Source) External to system

• (Stimulus) The OPC experiences a flood of calls through the
Web Service Broker endpoint that do not correspond to any cur-
rent orders.

• (Artifact) OPC

• (Environment) Normal operation

• (Response) The system detects the abnormal level of activity
and notifies system administrators.

• (Response Measure) The system continues to service re-
quests in degraded mode.

Scenario 9. Security • (Source) User

• (Stimulus) Credit approval and payment processing functions
are requested for a pending order.

• (Artifact) OPC and the Bank’s service

• (Environment) Normal operation

• (Response) The credit approval is completed securely and
cannot be refuted by either party.

• (Response Measure) In 100% of the transactions

 SOFTWARE ENGINEERING INSTITUTE | 55

6.3 ARCHITECTURAL APPROACHES

In an ATAM evaluation, the architectural approaches are identified during Steps 3 (Present Archi-
tecture) and 4 (Identify Architectural Approaches). Hub-and-spoke is the overarching architec-
tural approach of the Adventure Builder application. Although an ESB product is not used, the
OPC has a centralized workflow manager that contains all process rules and flow logic to coordi-
nate the processing of customer orders. The individual “spokes” in the OPC (external business
partners) execute their part of the business functionality and have no need to know the details of
the overall process. The use of the “hub” as an active mediator reduces the dependencies between
the “spokes” to promote modifiability. Most changes to any single “spoke” should be localized
and should only require changes to the “hub.”

The OPC uses SOAP-based Web services to communicate with the Consumer Web site and ex-
ternal business partners. Web services promote interoperability with a wide array of technologies
deployed by potential partners. The Web services interface design also promotes decoupling be-
tween the OPC and the software of the business partners.

Web services for the communication between the Consumer Web site and the OPC enables the
Web site to be hosted outside the firewall in the demilitarized zone, while the OPC module re-
mains inside the firewall. The communication is handled through an http port available on the
firewall. The choice of Web services allows the Consumer Web site and the OPC to be deployed
on different hardware and software platforms.

As mentioned previously, an evaluation focused on service integration does not cover every im-
portant architectural decision. For example, the architectural pattern used in the Consumer Web
site is the Model-View-Controller (MVC) pattern to promote modifiability. This design decision
should also be analyzed to identify risks and tradeoffs.

6.4 ARCHITECTURAL ANALYSIS

The analysis prescribed in the ATAM is not meant to be precise and detailed; it does not provide
numerical values for different qualities. The key is to elicit enough architectural information to
identify risks, which result from the correlation between the architectural decisions and their ef-
fect on quality attributes. The evaluation team typically probes the architectural approaches used
to address the important quality attribute requirements specified in the scenarios. The goal is to
assess whether these quality attribute requirements can be met. The evaluation is done to capture
the architectural approaches and identify their risks, non-risks, sensitivities, and tradeoffs
[Clements 2002b]. The analysis of some of the scenarios from Section 6.2.2 follows:

56 | CMU/SEI-2007-TR-015

Table 5: Architectural Analysis for Scenario 2

Analysis for Scenario 2

Scenario
Summary

A new airline provider that uses its own Web services interface is added to the
system in no more than 10 person-days of effort for the implementation.

Business
Goal(s)

Permit easy integration with new business partners.

Quality
Attribute

Modifiability, interoperability

Architectural
Approaches
and Reasoning

• Asynchronous SOAP-based Web services (see Sections 4.1 and 5.2)

• Interoperability is improved by the use of document-literal SOAP messages
(see Section 4.1) for the communication between OPC and external services.

• Adventure Builder runs on Sun Java System Application Server Platform
Edition V8.1. This platform implements the WS-I Basic Profile V1.1, so in-
teroperability issues across platforms are less likely to happen (see Section
5.1).

Risks • The design does not meet the requirement in this scenario, because it as-
sumes that all external transportation providers implement the same Web
services interface called AirlinePOService (as shown in Figure 10 and Figure
11). The design does not support transportation providers that offer their own
service interface.7

Tradeoffs • The homogenous treatment of all transportation providers in OPC increases
modifiability. However, intermediaries are needed to interact with external
providers that offer heterogeneous service interfaces, as in this scenario.
These intermediaries represent a performance overhead, because they may
require routing messages and extensive XML processing.

7 An ESB (see Section 4.1) could be a solution to the integration with this new airline provider and any other external ser-

vices in the future.

 SOFTWARE ENGINEERING INSTITUTE | 57

Table 6: Architectural Analysis for Scenario 4

Analysis for Scenario 4

Scenario
Summary

User submits an order for a package to the Consumer Web site. The system re-
sponds to the user in less than five seconds.

Business
Goal(s)

Provide satisfactory user experience.

Quality
Attribute

Performance

Architectural
Approaches
and Reasoning

• The use of document-literal SOAP results in better performance, because
there is no overhead associated with encoding (see Section 4.1).

• Static Web service (see Section 4.4) prevents the overhead of looking up a
registry.

• The Web services were designed around the documents handled, such as
purchase orders and invoices. The OPC Purchase Order Service interface
(see Figure 10) is coarse grained in the interest of improving system per-
formance (see Section 5.3). This interface reduces the overhead of calling a
fine-grained service for each step of a business process.

• The OPC interacts with the Bank in a synchronous fashion (see Section 5.2).
The charge is authorized quickly so that processing of the order may pro-
ceed. Then the OPC sends requests to transportation, lodging, and activity
providers, which will later respond through the Web Service Broker callback
endpoint. These requests are sent asynchronously to improve scalability and
throughput and also because of the nature of the legacy systems supporting
this interface.

Risks • The Adventure Builder architects have no control over the latency of exter-
nal service providers.8

Tradeoffs • Using Web services for communication with the Consumer Web site and
external entities promotes loose coupling and interoperability. However, the
overall latency of requests increases because of the overhead required for
translating among WSDL, Java, and the other XML processing involved (see
Section 5.8).

8 An SLA should be negotiated to mitigate this risk to some extent.

58 | CMU/SEI-2007-TR-015

Table 7: Architectural Analysis for Scenario 5

Analysis for Scenario 5

Scenario
Summary

The Consumer Web site sent a purchase order request to the OPC. The OPC
processed the request but didn’t reply to the Consumer Web site within five sec-
onds. So the Consumer Web site resends the request to the OPC. The OPC re-
ceives the duplicate request, but the consumer is not double-charged; data re-
mains in a consistent state; and the Consumer Web site is notified that the
original request was successful.

Business
Goal(s)

Provide satisfactory user experience by preventing overcharges and double book-
ing.

Quality
Attribute

Reliability

Architectural
Approaches
and Reasoning

• No transactions are distributed across multiple databases. Each piece of an
order is a separate transaction. The centralized workflow manager in the
OPC contains the state of each order during processing, and the database
supports atomic transactions.

• A correlation identifier to match requests and asynchronous responses al-
lows idempotent endpoints for service providers that update or change state
(see Section 5.4). The use of idempotent endpoints promotes reliability.

Risks None

Tradeoffs • A single database promotes reliability and reduces complexity at the expense
of availability by introducing a single point of failure in the OPC.

• The use of idempotent endpoints promotes reliability but imposes perform-
ance overhead and adds complexity to implementation.

 SOFTWARE ENGINEERING INSTITUTE | 59

Table 8: Architectural Analysis for Scenario 9

Analysis for Scenario 9

Scenario
Summary

Credit approval and payment processing functions must be secure and provide
for non-repudiation.

Business
Goal(s)

• Provide customers, Adventure Builder’s business, and business partners with
confidence in security.

• Meet contractual, legal, and regulatory obligations for secure credit transac-
tions.

Quality
Attribute

Security

Architectural
Approaches
and Reasoning

• Adventure Builder uses SSL mutual authentication (see Section 5.6). OPC
and the Bank exchange digital certificates through an SSL handshake. Com-
munication is encrypted using https.

• Declarative authorization is used to set authorization rights (see Section 5.7).

Risks • If certificate management is not done carefully, modifiability and interop-
erability will be negatively impacted.

• The Adventure Builder system has only contractual (not technical) enforce-
ment of information security management stored in partner systems.

Tradeoffs • Implementing SSL mutual authentication adds complexity, hence increasing
the time and costs of development and maintenance.

• Encryption of messages exchanged with external partners adds some per-
formance overhead.

60 | CMU/SEI-2007-TR-015

7 Conclusion

SOA is a widely used architectural approach for constructing large distributed systems, which
may integrate several systems that offer services and span multiple organizations. In this context,
it is important that technical aspects be considered carefully at architectural design time. SOA
systems are often part of technologically diverse environments, which involve numerous design
considerations. Many of those considerations were covered in this report. In a software architec-
ture evaluation, we weigh the relevance of each design concern only after we understand the im-
portance of each quality attribute requirement.

Because decisions about SOA tend to be pervasive and have a significant and broad impact on
business, performing an early architecture evaluation is particularly valuable and recommended.
The ATAM method can be used as-is to evaluate an SOA system. Architecture evaluators should
pay special attention to solutions that use dynamic binding to allow alternative execution path-
ways and different ordering of requests—quality attributes are harder to predict and analyze in
these solutions. The stakeholder categories do not seem to be particularly different for SOA sys-
tems, but the list is more dynamic, especially when external services are part of the solution. In
the architecture description, the runtime view best shows the SOA approach.

Because SOA involves the connectivity of multiple systems, business entities, and technologies,
its overall complexity and the political forces involved need to be factored into architecture trade-
off considerations more than in single-application designs where technical concerns predominate.
Balancing SOA aspects against other software architecture concerns is particularly challenging in
an SOA software architecture evaluation. Frequently, only part of a system is SOA-based, so the
evaluation needs to address both SOA-specific issues and those relevant to other combined ap-
proaches.

The technology is changing, so the technical discussion in this report will require constant up-
dates. Nonetheless, some of the issues discussed will remain valid and indeed were valid 20 years
ago when distributed systems became a reality.

 SOFTWARE ENGINEERING INSTITUTE | 61

62 | CMU/SEI-2007-TR-015

8 Feedback

The authors will continue to investigate ways to improve software architecture activities in the
context of SOA systems and are interested in feedback from the community. SOA represents a
fast-changing technology space, and this report will require occasional updates as standards and
best practices mature. If this report contains information that you deem inaccurate or outdated, if
you want to suggest additional topics, or if the report was useful to you, please let us know:

Paulo Merson – pfm@sei.cmu.edu

Phil Bianco – pbianco@sei.cmu.edu

Rick Kotermanski – rek@summa-tech.com

 SOFTWARE ENGINEERING INSTITUTE | 63

mailto:pfm@sei.cmu.edu
mailto:pbianco@sei.cmu.edu
mailto:rek@summa-tech.com

64 | CMU/SEI-2007-TR-015

Appendix A Sample SOA General Quality Attribute
Scenarios

In order to evaluate the quality of any system, we first need to characterize the various quality
attribute requirements applicable to the system. Quality attribute scenarios serve this purpose. For
the same reason that use cases can describe functional requirements, quality attribute scenarios are
used to specify quality attribute requirements. We enumerate a collection of quality attribute gen-
eral scenarios for seven quality attributes that are important to consider when using a service-
oriented approach: modifiability, performance, availability, security, reliability, interoperability,
and testability. These general scenarios are used through sections 4 and 5 to illustrate how quali-
ties are affected by architectural decisions. These scenarios are "general" in the sense that they are
system independent [Bass 2001].

Performance
P1 - A sporadic request for service ‘X’ is received by the server during normal operation. The
system processes the request in less than ‘Y’ seconds.
P2 - The service provider can process up to ‘X’ simultaneous requests during normal opera-
tion, keeping the response time on the server less than ‘Y’ seconds.
P3 - The roundtrip time for a request from a service user in the local network to service ‘X’
during normal operation is less than ‘Y’ seconds.

Availability
A1 - An improperly formatted message is received by a system during normal operation. The
system records the message and continues to operate normally without any downtime.
A2 - An unusually high number of suspect service requests are detected (denial-of-service at-
tack), and the system is overloaded. The system logs the suspect requests, notifies the system
administrators, and continues to operate normally.
A3 - Unscheduled server maintenance is required on server ‘X.’ The system remains opera-
tional in degraded mode for the duration of the maintenance.
A4 - A service request is processed according to its specification for at least 99.99% of all re-
quests.
A5 - A new service is deployed without impacting the operations of the system.
A6 - A third-party service provider is unavailable; modules that use that service respond ap-
propriately regarding the unavailability of the external service; and the system continues to
operate without failures.

Security
S1 - A third-party service with malicious code is used by the system. The third-party service
is unable to access data or interfere with the operation of the system. The system notifies the
system administrators.
S2 - An attack is launched attempting to access confidential customer data. The attacker is not
able to break the encryption used in all the hops of the communication and where the data is
persisted. The system logs the event and notifies the system administrators.
S3 - A request needs to be sent to a third-party service provider, but the provider’s identity
can not be validated. The system does not make the service request and logs all relevant in-
formation. The third party is notified along with the system administrator.

 SOFTWARE ENGINEERING INSTITUTE | 65

S4 - An unauthorized service user attempts to invoke a protected service provided by the sys-
tem. The system rejects the attempt and notifies the system administrator.
S5 - An attacker is modifying incoming service requests in order to launch an attack on the
system infrastructure. The system identifies and discards all tampered messages, logs the
event, and notifies the system administrators.
S6 - An attacker attempts to exploit the service registry in order to redirect service requests.
The service registry denies access to information in the registry, logs the event, and notifies
the system administrators.

Testability
T1 - An integration tester performs integration tests on a new version of a service that pro-
vides an interface for observing output. 90% path coverage is achieved within one person-
week.

Interoperability
I1 - A new business partner that uses platform ‘X’ is able to implement a service user module
that works with our available services in platform ‘Y’ in two person-days.
I2 - A transaction of a legacy system running on platform ‘X’ is made available as a Web ser-
vice to an enterprise application that is being developed for platform ‘Y’ using the Web ser-
vices technology. The wrapping of the legacy operation as a service with proper security veri-
fication, transaction management, and exception handling is done in 10 person-days.

Modifiability
M1 - A service provider changes the service implementation, but the syntax and the seman-
tics of the interface do not change. This change does not affect the service users.
M2 - A service provider changes the interface syntax of a service that is publicly available.
The old version of the service is maintained for 12 months, and existing service users are not
affected within that period.
M3 - A service user is looking for a service. A suitable service is found that contains no more
than ‘X’ percentage of unneeded operations, so the probability of the service provider chang-
ing is reduced.

Reliability
R1 - A sudden failure occurs in the runtime environment of a service provider. After recov-
ery, all transactions are completed or rolled back as appropriate, so the system maintains un-
corrupted, persistent data.
R2 - A service becomes unavailable during normal operation. The system detects and restores
the service within two minutes.

66 | CMU/SEI-2007-TR-015

Appendix B Glossary of Technical Terms and Acronyms

ATAM The Architecture Tradeoff Analysis Method (ATAM) [Kazman 2000, Clements
2002b] is an architecture evaluation method developed at the SEI that consists of
nine steps and identifies risks related to the ability of an architecture to meet its qual-
ity attribute requirements. For more details, see Section 6.1.

BPEL Business Process Execution Language (BPEL) is a standard [OASIS 2006a] used to
describe workflow-oriented business processes. For more details, see Section 4.3.

Compensating
transaction

A compensating transaction undoes the effect of a previously committed transaction.

Conversational state Refers to data that a server-side component stores on behalf of the client component
across two or more calls. For example, in a Web store solution, the conversational
state of a server-side component can include the contents of the shopping cart. This
state should be preserved for each user across multiple requests.

CORBA The Common Object Request Broker Architecture (CORBA) is a standard defined
by the Object Management Group (OMG) that enables software components written
in different programming languages and running on different platforms to interact.

Data marshalling See Serialization.

Dead-letter In a messaging system, messages that are not delivered are recorded in a dead-letter
queue. A few reasons for failed delivery include network failures, a queue being full,
and authentication failure.

Document-literal See the description on page 14.

DOM Document Object Model (DOM) is a W3C standard for representing and manipulat-
ing XML data as a set of objects organized in a tree data structure.

DTD The Document Type Definition (DTD) is a type of document that contains a set of
declarations to define the structure of XML files. It is used for XML validation.

EAI Enterprise Application Integration consists of software and architectural principles
that allow for the integration of applications. EAI attempts to provide real-time ac-
cess to data and processes with minimal changes to the existing applications and
their underlying data structures.

ESB Enterprise Service Bus is an architectural style that creates a “universal integration
backbone” that provides infrastructure services to other services or applications to
promote a consistent approach to integration while reducing the complexity of the
applications or services being integrated. See Section 4.2.

 SOFTWARE ENGINEERING INSTITUTE | 67

ETL ETL (extract, transform, and load) is the data warehousing process for extracting
outside data while transforming it to conform to organizational needs and then load-
ing it into the data warehouse.

Jini Jini is a technology proposed by Sun Microsystems to create distributed systems that
consist of cooperating services.

LDAP Lightweight Directory Access Protocol (LDAP) is an application protocol for query-
ing and modifying directory services running over TCP/IP.

Marshalling See Serialization.

Object-to-WSDL
translation

Process where a development tool takes an object interface definition (e.g., a Java
class or interface) and generates the corresponding WSDL definition.

REST See the description on page 16.

RPC-encoded SOAP See the description on page 13.

SaaS Software as a service (SaaS) is a software delivery model where customers don’t
own a copy of the application. Instead of paying for a software license, customers
pay for using the software, which is available via the Web.

SAML Security Assertion Markup Language (SAML) is an XML standard for exchanging
authentication and authorization data between security domains.

SAX Simple API for XML (SAX) is a common mechanism to parse XML documents se-
rially. Events are generated for each element parsed in the XML document.

Screen scraping Technique where a program (screen scraper) extracts data from the display output of
another program and sometimes also sends data to that program emulating keyboard
data entry.

Serialization Serialization refers to the process of transforming the memory representation of an
object to a data format suitable for storage or transmission. Serialization is also
called marshalling, and the opposite operation is called deserialization or unmarshal-
ling.

SOAP Simple Object Access Protocol (SOAP) is the XML-based protocol used for the
message exchange between service users and providers when Web services technol-
ogy is used. SOAP is a W3C standard and the current version is 1.2 [W3C 2003].

SOAP fault The body of the SOAP messages may contain a standard element called fault that
carries information about an error that occurred.

UDDI Universal Description Discovery and Integration is a platform-independent, XML-
based registry that allows service providers to list their services and define how ser-
vice consumers can locate and interact with those services. UDDI is at the core of
Web services standards and is sponsored by OASIS.

68 | CMU/SEI-2007-TR-015

Unmarshalling See Serialization.

WSDL Web services Description Language (WSDL) is the XML-based language used to
specify service interfaces in the Web services technology [W3C 2007]. Services are
described as a set of endpoints.

WS-I WS-I is an open industry organization that promotes Web services interoperability.
For more information, go to http://www.ws-i.org.

WS-I profile A profile specifies a list of Web services standards at specific versions. It also con-
tains normative statements that impose (“must”) or recommend (“should”) restric-
tions on how each standard can be used. Vendors of Web services products that im-
plement the standards and normative statements can claim conformance to a profile.

As an example, the Basic Profile V1.1 requires SOAP V1.1, WSDL V1.1, and UDDI
V2. One of the normative statements is: “R1107 A RECEIVER MUST interpret
a SOAP message as a Fault when the soap:Body of the message has a single
soap:Fault child.”

WS-Security WS-Security is an OASIS standard for applying security to Web services [OASIS
2004b]. It defines a set of SOAP extensions that can ensure the integrity and confi-
dentiality of messages. It accommodates a variety of security models and encryption
technologies and is extensible to support multiple security token formats.

XA XA is an X/Open specification for distributed transaction processing. It describes the
responsibilities of a resource manager for transactional processing.

XML Encryption XML Encryption is a W3C specification that defines how to encrypt the content of
an XML element.

XML Schema XML schema is a W3C specification that describes how one can create an XML
schema definition file (extension “.xsd”). The schema file is used for XML valida-
tion and defines rules to which an XML file document should conform.

XML Signature XML Signature is a W3C recommendation that defines an XML syntax for digital
signatures.

XML validation Verifies that an XML file is syntactically well-formed and is conformant to a defined
structure. The defined structure is typically specified using a DTD file or an XML
schema.

XSLT Extensible Stylesheet Language Transformations (XSLT) is a language for the trans-
formation of XML documents into another XML- or text-based document. XSLT is
a W3C specification.

 SOFTWARE ENGINEERING INSTITUTE | 69

http://www.ws-i.org/

70 | CMU/SEI-2007-TR-015

Appendix C Acronym List

API application program interface

ATAM Architecture Tradeoff Analysis Method

BPEL Business Process Execution Language

CEP complex event processing

CICS Customer Information Control System

CIO chief information officer

CORBA Common Object Request Broker Architecture

COTS commercial off-the-shelf

CSO chief security officer

DCE Distributed Computing Environment

DCOM distributed component object model

DOM document object model

DTD document type definition

EAI enterprise application integration

EDA event-driven architecture

ERP enterprise resource planning

ESB enterprise service bus

ESP event stream processing

ETL extract, transform, and load

HIPAA Health Insurance Portability and Accountability Act

IIOP Internet Inter-ORB Protocol

J2EE Java 2 Platform Enterprise Edition

JDBC Java Database Connectivity

LDAP Lightweight Directory Access Protocol

MVC Model View Controller

 SOFTWARE ENGINEERING INSTITUTE | 71

OPC Order Processing Center

ORB object request broker

PKI Public Key Infrastructure

RAS reliability, availability, and serviceability

REST Representational State Transfer

RIA rich internet application

RPC remote procedure call

SaaS software as a service

SAML Security Assertion Markup Language

SAX simple API for XML

SCA service component architecture

SDO Service Data Objects

SEI Software Engineering Institute

SLA service level agreement

SNA/LU systems network architecture/logical unit

SOA service-oriented architecture

SOAP Simple Object Access Protocol/Service Oriented Architecture Protocol (no
longer an acronym, now simply referred to as SOAP)

SQL Structured Query Language

SSL secure socket layer

SSO single sign on

UDDI universal description, discovery, and integration

UML Unified Modeling Language

URI uniform resource identifier

VPN Virtual Private Networking

WCF Windows Communication Foundation

WS Web services

WSDL Web Services Description Language

72 | CMU/SEI-2007-TR-015

WS-I Web Services-Interoperability

WS-R Web Services-Reliability

WSRM WS-Reliability standard

WS-RM WS-Reliable Messaging standard

XML Extensible Markup Language

XQuery XML Query Language

XSLT Extensible Stylesheet Language Transformation

 SOFTWARE ENGINEERING INSTITUTE | 73

74 | CMU/SEI-2007-TR-015

References

[Barbacci 2003]
Barbacci, Mario; Clements, Paul; Lattanze, Anthony; Northrop, Linda; & Wood, William. Using
the Architecture Tradeoff Analysis Method (ATAM) to Evaluate the Software Architecture for a
Product Line of Avionics Systems: A Case Study (CMU/SEI-2003-TN-012, ADA418415). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports/03tn012.html.

[Bass 2001]
Bass, Len; Klein, Mark; & Moreno, Gabriel. Applicability of General Scenarios to the Architec-
ture Tradeoff Analysis Method (CMU/SEI-2001-TR-014, ADA396098). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2001.
http://www.sei.cmu.edu/publications/documents/01.reports/01tr014.html.

[Bass 2003]
Bass, Len; Clements, Paul; & Kazman, Rick. Software Architecture in Practice, 2nd ed. Boston,
MA: Addison-Wesley, 2003 (ISBN 0-321-15495-9).

[Clements 2002a]
Clements, Paul; Bachmann, Felix; Bass, Len; Garlan, David; Ivers, James; Little, Reed; Nord,
Robert; & Stafford, Judith. Documenting Software Architectures: Views and Beyond. Boston,
MA: Addison-Wesley, 2002 (ISBN 0-201-70372-6).

[Clements 2002b]
Clements, Paul; Kazman, Rick; & Klein, Mark. Evaluating Software Architectures: Methods and
Case Studies. Boston, MA: Addison-Wesley, 2002 (ISBN 0201-70482-X).

[Ewald 2002]
Ewald, Tim. The Argument Against SOAP Encoding. http://msdn2.microsoft.com/en-
us/library/ms995710.aspx (2002).

[Fielding 2000]
Fielding, Roy. “Architectural Styles and the Design of Network-Based Software Architectures.”
PhD diss., University of California, Irvine, 2000.

 [Jones 2001]
Jones, Lawrence G. & Lattanze, Anthony J. Using the Architecture Tradeoff Analysis Method to
Evaluate a Wargame Simulation System: A Case Study (CMU/SEI-2001-TN-022, ADA399795).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2001.
http://www.sei.cmu.edu/publications/documents/01.reports/01tn022.html.

 SOFTWARE ENGINEERING INSTITUTE | 75

http://www.sei.cmu.edu/publications/documents/01.reports/01tr014.html
http://www.sei.cmu.edu/publications/documents/01.reports/01tr014.html
http://www.sei.cmu.edu/publications/documents/01.reports/01tr014.html
http://msdn2.microsoft.com/en-us/library/ms995710.aspx
http://msdn2.microsoft.com/en-us/library/ms995710.aspx
http://www.sei.cmu.edu/publications/documents/01.reports/01tr014.html
http://www.sei.cmu.edu/publications/documents/01.reports/01tn022.html

[Kazman 2000]
Kazman, Rick; Klein, Mark; & Clements, Paul. ATAM: Method for Architecture Evaluation
(CMU/SEI-2000-TR-004, ADA382629). Pittsburgh, PA: Software Engineering Institute, Carne-
gie Mellon University, 2000.
http://www.sei.cmu.edu/publications/documents/00.reports/00tr004.html.

[Kiss 2004]
Kiss, Roman. SoapMSMQ Transport.
http://www.codeproject.com/cs/webservices/SoapMSMQ.asp (2004).

[Lipson 2006]
Lipson, Howard & Peterson, Gunnar. Security Concepts, Challenges, and Design Considerations
for Web Services Integration.
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/assembly/639.html (2006).

[Lublinsky 2007]
Lublinsky, Boris. “Versioning in SOA.” The Architecture Journal, Journal 11 (April 2007): 36-
41. http://msdn2.microsoft.com/en-us/library/bb491124.aspx (2007).

[MacVittie 2006]
MacVittie, Lori. “Taking a REST from SOAP.” Network Computing 17, 20 (October 5, 2006):
25-26.
http://www.networkcomputing.com/channels/enterpriseapps/showArticle.jhtml?articleID=193005
691 (2006).

[McConnell 2001]
McConnell, Steve. “An Ounce of Prevention.” IEEE Software 18, 3 (May 2001): 5-7.

[Microsoft 2007]
Microsoft Corporation. What Is Windows Communication Foundation?
http://msdn2.microsoft.com/en-us/library/ms731082.aspx. (2007)

 [Mitchell 2005]
Mitchell, Benjamin. “Why WSE?” http://msdn2.microsoft.com/en-us/library/ms996935.aspx
(February 2005).

[OASIS 2004a]
OASIS. Web Services Reliable Messaging TC WS-Reliability 1.1: OASIS Standard, 15 November
2004.
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf (2004).

[OASIS 2004b]
OASIS. Web Services Security: SOAP Message Security 1.0 (WS4 Security 2004).
http://xml.coverpages.org/WSS-SOAP-MessageSecurityV10-20040315.pdf (15 March 2004).

76 | CMU/SEI-2007-TR-015

http://www.sei.cmu.edu/publications/documents/00.reports/00tr004.html
http://www.codeproject.com/cs/webservices/SoapMSMQ.asp
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/assembly/639.html
http://msdn2.microsoft.com/en-us/arcjournal/bb491107.aspx
http://www.networkcomputing.com/channels/enterpriseapps/showArticle.jhtml?articleID=193005691
http://www.networkcomputing.com/channels/enterpriseapps/showArticle.jhtml?articleID=193005691
http://msdn2.microsoft.com/en-us/library/ms996935.aspx
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.1-spec-os.pdf
http://xml.coverpages.org/WSS-SOAP-MessageSecurityV10-20040315.pdf

[OASIS 2005]
OASIS. SAML V2.0 Executive Overview: Committee Draft 01, 12 April 2005.
http://www.oasis-open.org/committees/download.php/13525/sstc-saml-exec-overview-2.0-cd-01-
2col.pdf (2005).

[OASIS 2006a]
OASIS. Web Services Business Process Execution Language Version 2.0: OASIS Standard 11
April 2007.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf (2007).

[OASIS 2006b]
OASIS. Web Services Reliable Messaging (WS-ReliableMessaging): Committee draft 04, August
11, 2006. http://docs.oasis-open.org/ws-rx/wsrm/200608/wsrm-1.1-spec-cd-04.pdf (2006).

[O’Brien 2005]
O’Brien, Liam; Bass, Len; & Merson, Paulo. Quality Attributes and Service-Oriented Architec-
tures (CMU/SEI-2005-TN-014, ADA441830). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports/05tn014.html.

[OSOA 2007]
Open Service Oriented Architecture (OSOA). Open SOA Service Component Architecture Speci-
fications: Draft Specifications.
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications (2007)

[Schmelzer 2002]
Schmelzer, Ronald. “Breaking XML to Optimize Performance.” ZapThink, 24 October 2002.
http://searchwebservices.techtarget.com/originalContent/0,289142,sid26_gci858888,00.html
(2002).

[SDO 2006]
Service Data Objects (SDO). Service Data Objects for Java Specification Version 2.1.0, Novem-
ber 2006.
http://www.osoa.org/download/attachments/36/Java-SDO-Spec-v2.1.0-FINAL.pdf?version=1
(2006).

[SEI 2007]
Software Engineering Institute. Software Architecture Glossary.
http://www.sei.cmu.edu/architecture/glossary.html (2007).

[Shah 2006]
Shah, Gautam. “Axis Meets MOM: Reliable Web Services with Apache Axis and MOM.” Java-
World, February 20, 2006. http://www.javaworld.com/javaworld/jw-02-2006/jw-0220-axis.html
(2006).

[Shaw 1996]
Shaw, M. & Garlan, D. Software Architecture: Perspectives on an Emerging Discipline. Upper
Saddle River, NJ: Prentice Hall, 1996 (ISBN 0-131-82957-2).

 SOFTWARE ENGINEERING INSTITUTE | 77

http://www.oasis-open.org/committees/download.php/13525/sstc-saml-exec-overview-2.0-cd-01-2col.pdf
http://www.oasis-open.org/committees/download.php/13525/sstc-saml-exec-overview-2.0-cd-01-2col.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200608/wsrm-1.1-spec-cd-04.pdf
http://www.sei.cmu.edu/publications/documents/05.reports/05tn014.html
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://searchwebservices.techtarget.com/originalContent/0,289142,sid26_gci858888,00.html
http://www.osoa.org/download/attachments/36/Java-SDO-Spec-v2.1.0-FINAL.pdf?version=1
http://www.sei.cmu.edu/architecture/glossary.html
http://www.javaworld.com/javaworld/jw-02-2006/jw-0220-axis.html

[Shirasuna 2004]
Shirasuna, Satoshi; Slominski, Aleksander; Fang, Liang; & Gannon, Dennis. “Performance Com-
parison of Security Mechanisms for Grid Services,” 360-364. Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing (Grid ’04). Pittsburgh, PA, November 2004. IEEE,
2004. http://www.extreme.indiana.edu/xgws/papers/sec-perf-short.pdf.

[Singh 2004]
Singh, Inderjeet. Designing Web Services with the J2EE 1.4 Platform: JAX-RPC, SOAP, and
XML Technologies. Boston, MA: Addison-Wesley, 2004 (ISBN 0-321-20521-9).

[Sun 2007a]
Sun Microsystems. Java BluePrints Program. https://blueprints.dev.java.net/ (2007).

[Sun 2007b]
Sun Microsystems, Inc. JSR 311:JAX-RS: The Java API for RESTful Web Services.
http://jcp.org/en/jsr/detail?id=311 (2007).

[Vinoski 2007]
Vinoski, Steve. “REST Eye for the SOA Guy.” IEEE Internet Computing 11, 1 (January/February
2007): 82-84.

[WS-I 2007]
Web Services Interoperability Organization (WS-I). Basic Security Profile Version 1.0: Final Ma-
terial 2007-03-30. http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html (2007).

[W3C 2003]
W3C. SOAP Version 1.2 Part 0: Primer, W3C Recommendation 24 June 2003.
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/ (2003).

[W3C 2007]
W3C. Web Services Description Language (WSDL) Version 2.0 Part 0: Primer, W3C Working
Draft 26 March 2007. http://www.w3.org/TR/wsdl20-primer/ (2007).

[xFront 2007]
xFront. XML Schema Versioning. http://www.xfront.com/Versioning.pdf (2007).

[Zimmermann 2003]
Zimmermann, Olaf; Tomlinson, Mark; & Peuser, Stefan. Perspectives on Web Services: Applying
SOAP, WSDL and UDDI to Real-World Projects. London, UK: Springer, 2003 (ISBN 978-3-540-
00914-6).

78 | CMU/SEI-2007-TR-015

http://www.extreme.indiana.edu/xgws/papers/sec-perf-short.pdf
https://blueprints.dev.java.net/
http://jcp.org/en/jsr/detail?id=311
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
http://www.w3.org/TR/wsdl20-primer/
http://www.xfront.com/Versioning.pdf

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Head-
quarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the
Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

September 2007
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
Evaluating a Service-Oriented Architecture

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)
Phil Bianco, Rick Kotermanski, & Paulo Merson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2007-TR-015

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
ESC-TR-2007-015

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The emergence of service-oriented architecture (SOA) as an approach for integrating applications that expose services presents many
new challenges to organizations resulting in significant risks to their business. Particularly important among those risks are failures to
effectively address quality attribute requirements such as performance, availability, security, and modifiability. Because the risk and im-
pact of SOA are distributed and pervasive across applications, it is critical to perform an architecture evaluation early in the software
life cycle. This report contains technical information about SOA design considerations and tradeoffs that can help the architecture
evaluator to identify and mitigate risks in a timely and effective manner. The report provides an overview of SOA, outlines key architec-
ture approaches and their effect on quality attributes, establishes an organized collection of design-related questions that an architec-
ture evaluator may use to analyze the ability of the architecture to meet quality requirements, and provides a brief sample evaluation.

14. SUBJECT TERMS
service-oriented architecture, SOA, Web services, software architecture evaluation, ATAM,
software architecture, design decisions, quality attributes

15. NUMBER OF PAGES
90

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	Introduction
	AUDIENCE FOR THIS REPORT
	STRUCTURE OF THIS REPORT

	What Is Service-Oriented Architecture?
	SOA AND WEB SERVICES
	DRIVERS FOR SOA

	Stakeholders, Quality Attributes, and Architecture Representation for SOA
	STAKEHOLDERS
	QUALITY ATTRIBUTE REQUIREMENTS
	ARCHITECTURE DESCRIPTION OF AN SOA

	SOA Architectural Approaches
	SOA COMMUNICATION APPROACHES
	INTEGRATION APPROACH – DIRECT POINT-TO-POINT VERS
	BUSINESS PROCESS EXECUTION LANGUAGE (BPEL)
	STATIC VERSUS DYNAMIC WEB SERVICES
	EMERGING SOA-FOCUSED TECHNOLOGIES

	SOA Design Questions That Affect Quality Attributes
	WHAT IS KNOWN ABOUT THE TARGET PLATFORM?
	SYNCHRONOUS OR ASYNCHRONOUS SERVICES?
	COARSE- OR FINE-GRAINED SERVICES?
	WHAT ARE THE STRATEGIES FOR EXCEPTION HANDLING AND FAULT RECOVERY?
	HTTPS OR MESSAGE-LEVEL SECURITY?
	HOW IS SERVICE AUTHENTICATION MANAGED?
	HOW IS SERVICE ACCESS AUTHORIZATION PERFORMED?
	IS XML OPTIMIZATION BEING USED?
	IS A SERVICE REGISTRY BEING USED?
	HOW ARE LEGACY SYSTEMS INTEGRATED?
	IS BPEL USED FOR SERVICE ORCHESTRATION?
	WHAT IS THE APPROACH FOR SERVICE VERSIONING?

	SOA Architecture Evaluation Example
	ARCHITECTURE EVALUATION USING THE ATAM
	SAMPLE APPLICATION
	ARCHITECTURAL APPROACHES
	ARCHITECTURAL ANALYSIS

	Conclusion
	Feedback
	Appendix ASample SOA General Quality Attribute Scenarios
	Appendix BGlossary of Technical Terms and Acronyms
	Appendix CAcronym List
	References

